Brukner & Khan’s
Clinical Sports Medicine
FOURTH EDITION
We dedicate this fourth edition to the Clinical Sports Medicine community—to each clinician, educator, and policy maker committed to improving health through the power of physical activity.
Sport in Australia is ingrained in the national consciousness more widely, deeply, and indelibly than almost anywhere else in the world. When a prominent sportsperson sustains a sporting injury, either traumatically or from overuse, becomes excessively fatigued, or fails to live up to expectations, this assumes national importance. It is even more relevant nowadays with greater individual participation in sporting activities. The same type of problems occur for recreational athletes, middle-aged people wanting to become fit, or older people wishing to sustain a higher level of activity in their later years.

In *Clinical Sports Medicine* the authors take sport and exercise medicine out of the realm of the elite athlete and place it fairly and squarely where it belongs—as a subspecialty to serve everyone in the community who wishes to be active.

The book is organized in a manner that is sensible and usable. The chapters are arranged according to the anatomical region of the symptom rather than diagnostic categories. This results in a very usable text for the sports physician, general/family practitioner, physiotherapist, masseur, or athletic trainer whose practice contains many active individuals.

Practical aspects of sports medicine are well covered—care of the sporting team and concerns that a clinician might have when traveling with a team. In all, this is an eminently usable text which is timely in its production and will find an important place among clinicians involved in the care of active individuals.

JOHN R SUTTON MD, FRACP

Professor of Medicine, Exercise Physiology and Sports Medicine

Faculty of Health Sciences

University of Sydney

Past President, American College of Sports Medicine

This foreword was written by the late Professor John Sutton before his untimely death in 1996; it is retained in this textbook out of profound respect for this champion of the integration of science, physical activity promotion, and multidisciplinary patient care.
Foreword to the fourth edition

Humans were not designed to sit at desks all day and in front of televisions all evening, and this physical inactivity is related to a host of health-related issues. Increasing physical activity is one very powerful way to mitigate many of the health issues we face today, and programs such as the Healthy People 2020 initiative and the Exercise is Medicine campaign encourage individuals to remain active throughout their lifetime.

As people become more involved in sport and exercise, sports medicine becomes increasingly important, and Clinical Sports Medicine has understandably become what we in the US refer to as the “PDR” (Physicians’ Desk Reference) of sports medicine. For my UK colleagues the translation is “BNF” (British National Formulary). This text is extremely comprehensive, covering fundamental principles of biomechanics, diagnosis and treatment, regional musculoskeletal injuries, and medical problems. The text also addresses those practical issues of sports medicine that are often missing from other texts, such as dealing with athletic teams, covering endurance events, and working with the elite athlete.

The organization of the text makes it remarkably easy to use, including such features as color-coded book sections, flow diagrams to reinforce concepts, and tables that clearly organize information. Vicky Earle’s anatomical drawings are truly among the best in the business. All these features put an astounding wealth of information at the reader’s fingertips. This information has been assembled by a group of over 100 experienced and world-class physical therapists, physicians, and scientists. These co-authors provide up-to-date references when available, and clearly state when evidence is lacking.

This updated, fourth edition includes 200 new photos/graphics and 13 new chapters on current topics, including Integrating evidence into clinical practice, Principles of activity promotion, and Medical emergencies in sport. The editors continue to add to the clinically relevant topics with one of my favorites being what I call “How to manage the patient who has seen everyone and wants a cure from you!” (Chapter 41).

An innovative and exciting addition to this edition is the integration of the Clinical Sports Medicine master-classes that allow you, through videos and podcasts on the Clinical Sports Medicine website, to learn directly from the experts. These masterclasses will be continually updated and they provide a remarkably dynamic component to the text.

It is exciting to watch Clinical Sports Medicine evolve substantially with each edition. The editors’ focus of this text is to “help clinicians help patients” and they have clearly hit their mark. This book is an absolute must-have for any sports medicine professional.

Professor Irene Davis, PT, PhD, FACSM, FAPTA, FASB
Director, Spaulding National Running Center
Department of Physical Medicine and Rehabilitation
Harvard Medical School
Spaulding-Cambridge Outpatient Center
Cambridge, MA, USA
Part A Fundamental principles

1. Sports and exercise medicine: addressing the world’s greatest public health problem
2. Sports and exercise medicine: the team approach
3. Integrating evidence into clinical practice to make quality decisions
4. Sports injuries: acute
5. Sports injuries: overuse
6. Pain: why and how does it hurt?
7. Beware: conditions masquerading as sports injuries
8. Clinical aspects of biomechanics and sporting injuries
10. Recovery
11. Principles of diagnosis: clinical assessment
12. Principles of diagnosis: investigations including imaging
13. Treatments used for musculoskeletal conditions: more choices and more evidence
14. Core stability
15. Principles of rehabilitation
16. Principles of physical activity promotion for clinicians

Part B Regional problems

17. Sports concussion
18. Headache
19. Facial injuries
20. Neck pain
21. Shoulder pain
22. Elbow and arm pain
23. Wrist pain
24. Hand and finger injuries
25. Thoracic and chest pain
26. Low back pain
27. Buttock pain
28. Hip-related pain
29. Groin pain
30. Anterior thigh pain
31. Posterior thigh pain
32. Acute knee injuries
33. Anterior knee pain
34. Lateral, medial, and posterior knee pain
35. Leg pain
36. Calf pain
PART A Fundamental principles

1 Sports and exercise medicine: addressing the world's greatest public health problem 2

- The burden of physical inactivity and sedentary behavior 2
- Physical fitness—more health benefits than smoking cessation or weight loss 2
- The molecular mechanisms that explain the health benefits of physical activity 2
- Putting it all together—the economic imperative 4
 - Practical challenges 4
 - The darkest hour is just before the dawn 4

2 Sports and exercise medicine: the team approach 6

- The sports and exercise medicine team 6
- Multiskilling 6
- The sports and exercise medicine model 7
- The challenges of management 7
 - Diagnosis 8
 - Treatment 9
 - Meeting individual needs 9
- The coach, the athlete, and the clinician 9
 - "Love thy sport" (and physical activity!) 9

3 Integrating evidence into clinical practice to make quality decisions 11

- Life before evidence-based practice 12
- Sackett and the McMaster contribution 12
- This seems obvious—so what is the problem? 13

Co-authors xxxvi
Other contributors xliii
Acknowledgments xlv
Guided tour of your book xlv

4 Sports injuries: acute 15

- Bone 16
 - Fracture 16
 - Periosteal injury 17
- Articular cartilage 17
- Joint 18
 - Dislocation/subluxation 18
- Ligament 18
- Muscle 20
 - Strain/tear 20
 - Contusion 21
 - Myositis ossificans 21
 - Cramp 22
- Tendon 22
- Bursa 23
- Nerve 23
- Skin 23

5 Sports injuries: overuse 25

- Bone stress 25
 - Mechanism 26
 - Risk factors 26
 - Skeletal sites 28
 - Clinical diagnosis 28
 - Imaging diagnosis 28
 - Low-risk and high-risk stress fracture 29
 - General principles of stress fracture treatment 30
- Osteitis and periostitis 31
 - Apophysitis 31
- Articular cartilage 31
- Joint 31
- Ligament 31
- Muscle 31
 - Focal tissue thickening/fibrosis 32
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Chronic compartment syndrome</td>
</tr>
<tr>
<td>32</td>
<td>Muscle soreness</td>
</tr>
<tr>
<td>33</td>
<td>Tendon</td>
</tr>
<tr>
<td>33</td>
<td>Tendon overuse injury (tendinopathy)</td>
</tr>
<tr>
<td>33</td>
<td>A contemporary model of a continuum of tendon pathology</td>
</tr>
<tr>
<td>36</td>
<td>Other terms associated with overuse tendon injuries</td>
</tr>
<tr>
<td>37</td>
<td>Bursa</td>
</tr>
<tr>
<td>37</td>
<td>Nerve</td>
</tr>
<tr>
<td>37</td>
<td>Skin</td>
</tr>
<tr>
<td>37</td>
<td>Blisters</td>
</tr>
<tr>
<td>37</td>
<td>Infections</td>
</tr>
<tr>
<td>38</td>
<td>Dermatitis</td>
</tr>
<tr>
<td>38</td>
<td>Skin cancers</td>
</tr>
<tr>
<td>38</td>
<td>But it’s not that simple …</td>
</tr>
<tr>
<td>38</td>
<td>Pain: where is it coming from?</td>
</tr>
<tr>
<td>38</td>
<td>Masquerades</td>
</tr>
<tr>
<td>38</td>
<td>The kinetic chain</td>
</tr>
<tr>
<td>41</td>
<td>Pain: why and how does it hurt?</td>
</tr>
<tr>
<td>41</td>
<td>What is pain?</td>
</tr>
<tr>
<td>42</td>
<td>What is nociception?</td>
</tr>
<tr>
<td>43</td>
<td>State-dependent sensitivity of primary nociceptors</td>
</tr>
<tr>
<td>44</td>
<td>State-dependent sensitivity of spinal nociceptors</td>
</tr>
<tr>
<td>45</td>
<td>The brain decides</td>
</tr>
<tr>
<td>45</td>
<td>The brain corrects the spinal cord</td>
</tr>
<tr>
<td>47</td>
<td>When pain persists, the brain changes</td>
</tr>
<tr>
<td>47</td>
<td>Treating someone in pain—a complex system requires a comprehensive approach</td>
</tr>
<tr>
<td>48</td>
<td>Clinical approach to referred pain—often neglected in clinical teaching</td>
</tr>
<tr>
<td>49</td>
<td>Radicular pain</td>
</tr>
<tr>
<td>49</td>
<td>Somatic pain</td>
</tr>
<tr>
<td>51</td>
<td>Clinical assessment of referred pain</td>
</tr>
<tr>
<td>52</td>
<td>Clinical summary</td>
</tr>
<tr>
<td>54</td>
<td>Beware: conditions masquerading as sports injuries</td>
</tr>
<tr>
<td>54</td>
<td>How to recognize a condition masquerading as a sports injury</td>
</tr>
<tr>
<td>54</td>
<td>Conditions masquerading as sports injuries</td>
</tr>
<tr>
<td>54</td>
<td>Bone and soft tissue tumors</td>
</tr>
<tr>
<td>56</td>
<td>Rheumatological conditions</td>
</tr>
<tr>
<td>57</td>
<td>Disorders of muscle</td>
</tr>
<tr>
<td>57</td>
<td>Endocrine disorders</td>
</tr>
<tr>
<td>58</td>
<td>Vascular disorders</td>
</tr>
<tr>
<td>58</td>
<td>Genetic disorders</td>
</tr>
<tr>
<td>59</td>
<td>Granulomatous diseases</td>
</tr>
<tr>
<td>59</td>
<td>Infection</td>
</tr>
<tr>
<td>59</td>
<td>Pain syndromes</td>
</tr>
<tr>
<td>61</td>
<td>Clinical aspects of biomechanics and sporting injuries</td>
</tr>
<tr>
<td>61</td>
<td>“Ideal” lower limb biomechanics—the basics</td>
</tr>
<tr>
<td>61</td>
<td>Lower limb joint motion</td>
</tr>
<tr>
<td>64</td>
<td>Ideal neutral stance position</td>
</tr>
<tr>
<td>65</td>
<td>“Ideal” biomechanics with movement—running</td>
</tr>
<tr>
<td>66</td>
<td>Loading (heel strike to foot flat)</td>
</tr>
<tr>
<td>67</td>
<td>Midstance (foot flat to heel off)</td>
</tr>
<tr>
<td>68</td>
<td>Propulsion (heel off to toe off)</td>
</tr>
<tr>
<td>69</td>
<td>Initial swing</td>
</tr>
<tr>
<td>69</td>
<td>Terminal swing</td>
</tr>
<tr>
<td>69</td>
<td>Angle and base of gait</td>
</tr>
<tr>
<td>69</td>
<td>Influence of gait velocity</td>
</tr>
<tr>
<td>70</td>
<td>Comparing heel and forefoot strike patterns</td>
</tr>
<tr>
<td>71</td>
<td>Influence of fatigue on running biomechanics</td>
</tr>
<tr>
<td>71</td>
<td>Lower limb biomechanical assessment in the clinical setting</td>
</tr>
<tr>
<td>73</td>
<td>Structural (“static”) biomechanical assessment</td>
</tr>
<tr>
<td>77</td>
<td>Functional lower limb tests—single-leg stance, heel raise, squat, and landing from a jump</td>
</tr>
<tr>
<td>82</td>
<td>Dynamic movement assessment (e.g. running biomechanics)</td>
</tr>
<tr>
<td>83</td>
<td>Sport-specific assessment</td>
</tr>
<tr>
<td>83</td>
<td>Summary of the lower limb biomechanical assessment</td>
</tr>
<tr>
<td>83</td>
<td>Clinical assessment of footwear—the Footwear Assessment Tool</td>
</tr>
<tr>
<td>83</td>
<td>Fit</td>
</tr>
<tr>
<td>83</td>
<td>General structure</td>
</tr>
<tr>
<td>83</td>
<td>Motion control properties</td>
</tr>
<tr>
<td>85</td>
<td>Cushioning</td>
</tr>
<tr>
<td>85</td>
<td>Wear patterns</td>
</tr>
</tbody>
</table>
Contents

Conditions related to suboptimal lower limb biomechanics 85
Management of lower limb biomechanical abnormalities 86
Foot orthoses 86
Taping 91
Biomechanics of cycling 92
Set-up and positioning on the bike 92
Bike set-up in other forms of cycling 96
Aerodynamics and wind resistance 97
Pedaling technique 97
Assessment 97
Rehabilitation 98
Conclusion 99
Upper limb biomechanics 99
The biomechanics of throwing 99
Normal biomechanics of the scapula in throwing 102
Abnormal scapular biomechanics and physiology 103
Clinical significance of scapular biomechanics in shoulder injuries 104
Changes in throwing arm with repeated pitching 104
Common biomechanical abnormalities specific to pitching 105
Biomechanics of swimming 105
Biomechanics of tennis 106
Biomechanics of other overhead sports 107

9 Principles of injury prevention 113
Systematic injury prevention 113
Warm-up 116
Taping and bracing 121
Taping 121
Bracing 122
Protective equipment 122
Suitable equipment 123
Running shoes 123
Running spikes 124
Football boots 125
Ski boots 125
Tennis racquets 126
Appropriate surfaces 127

Appropriate training 128
Principles of training 128
Training methods 130
Adequate recovery 134

10 Recovery 138
Warm-down or active recovery 138
Deep-water running 139
Cold water immersion (ice baths) 139
Massage 139
Compression garments 140
Lifestyle factors 140
Nutrition 140
Glycogen replacement 140
Protein replacement 141
Co-ingestion of carbohydrate and protein 141
Rehydration 142
Psychology 142
The function of the autonomic nervous system 143
Effect of exercise on the autonomic nervous system 143
Techniques that aid psychological recovery 143

11 Principles of diagnosis: clinical assessment 145
Making a diagnosis 145
History 146
Allow enough time 146
Be a good listener 146
Know the sport 146
Circumstances of the injury 146
Obtain an accurate description of symptoms 146
History of a previous similar injury 147
Other injuries 147
General health 147
Work and leisure activities 147
Consider why the problem has occurred 147
Training history 147
Equipment 148
Technique 148
Overtraining 148
Psychological factors 148
Contents

Nutritional factors 148
History of exercise-induced anaphylaxis 148
Determine the importance of the sport to the athlete 148

Examination 148
Develop a routine 148
Where relevant, examine the other side 148
Consider possible causes of the injury 148
Attempt to reproduce the patient’s symptoms 148
Assess local tissues 148
Assess for referred pain 148
Assess neural mechanosensitivity 149
Examine the spine 149
Biomechanical examination 149
Functional testing 149
The examination routine 149

12 Principles of diagnosis: investigations including imaging 157

Investigations 157
1. Understand the meaning of test results 157
2. Know how soon changes can be detected by investigations 157
3. Only order investigations that will influence management 157
4. Provide relevant clinical findings on the requisition 157
5. Do not accept a poor quality test 157
6. Develop a close working relationship with investigators 157
7. Explain the investigations to the patient 158

Radiological investigation 158
Plain X-ray 158
Computed tomographic (CT) scanning 158
Magnetic resonance imaging (MRI) 158
Ultrasound scan (for diagnosis) 159
Radioisotopic bone scan 160

Neurological investigations 161
Electromyography 161
Nerve conduction studies 161
Neuropsychological testing 161

Muscle assessment 161
Compartment pressure testing 161

Cardiovascular investigations 161
Respiratory investigations 161
Pulmonary function tests 161

The diagnosis 162

13 Treatments used for musculoskeletal conditions: more choices and more evidence 164

Evidence for treatment effectiveness is continually changing 164

Acute management 165
Rest 165
Ice 165
Compression 166
Elevation 166

Immobilization and early mobilization 166
Protected mobilization 167
Continuous passive motion 167

Therapeutic drugs 167
Analgesics 167
Topical analgesics 168
Nonsteroidal anti-inflammatory drugs (NSAIDs) 168
Topical anti-inflammatory agents 174
Corticosteroids 174
Nitric oxide donor 176
Sclerosing therapy 177
Prolotherapy 177
Glucosamine sulfate and chondroitin sulfate 178
Hyaluronic acid therapy (Hyalgan, Synvisc, Ostenil, Orthovisc) 178
Antidepressants 179
Local anesthetic injections 179
Traumeel 180
Bisphosphonates 180

Blood and blood products 180
Autologous blood injections 180
Platelet-rich plasma 180

Heat and cold 181
Cryotherapy 181
Superficial heat 183
Contrast therapy 184
16 Principles of physical activity promotion for clinicians 254
Who should receive exercise counseling? 255
Are there medical contraindications to being active? 255
Executing the prescription 256
Practical steps with the consultation 256
Exercise guidelines 257
Aerobic activity 257
Defining intensity 258
Resistance training 259
Flexibility 267
Follow-up 267
An overlooked element of motivation 267
Summary 268

17 Sports concussion 272
Definition of concussion 273
Prevention of concussion 273
The initial impact: applied pathophysiology 274
Management of the concussed athlete 274
On-field management 274
Determining when the player can return safely to competition 277
The risk of premature return to play and concussion sequelae 281
Risk of further injury 281
Second impact syndrome 281
Concussive convulsions 281
Prolongation of symptoms 281
Chronic traumatic encephalopathy 281
Mental health issues 282
Children and concussion in sport 282

18 Headache 290
Headache in sport 290
Clinical approach to the patient with headache 291
History 292
Examination 293
Vascular headaches 293

Migraine 293
Cluster headache 295
Cervical headache 295
Mechanism 295
Clinical features 296
Exercise-related causes of headache 297
Primary exertional headache 297
Exertional migraine 297
Post-traumatic headache 298
External compression headache 298
High-altitude headache 298
Hypercapnia headache 299

19 Facial injuries 300
Functional anatomy 300
Clinical assessment 300
Soft tissue injuries 301
Nose 303
Epistaxis (nosebleed) 303
Nasal fractures 303
Septal hematoma 303
Ear 304
Auricular hematoma 304
Lacerations 304
Perforated eardrum 304
Otitis externa 304
Eye 305
Assessment of the injured eye 305
Corneal injuries: abrasions and foreign body 306
Subconjunctival hemorrhage 307
Eyelid injuries 307
Hyphema 307
Lens dislocation 307
Vitreous hemorrhage 307
Retinal hemorrhage 307
Retinal detachment 308
Orbital injuries 308
Prevention of eye injuries 308
Teeth 309
Prevention of dental injuries 309
Fractures of facial bones 309
Fractures of the zygomaticomaxillary complex 310
Maxillary fractures 310
Mandibular fractures 311
Temporomandibular injuries 311
Prevention of facial injuries 312

20 Neck pain 313
Clinical perspective 313
Assessing patients with neck pain 315
History 315
Physical examination 317
Treatment of neck pain 326
Education 326
Posture 326
Exercise therapy 328
Manual therapy 331
Soft tissue techniques 332
Neural tissue mobilization 332
Dry needling 332
Stress management 332
Neck pain syndromes 333
Acute wry neck 333
Acceleration–deceleration injury 334
Cervicogenic headache 334
Acute nerve root pain 334
Stingers or burners 335
Conclusion 336

21 Shoulder pain 342
Functional anatomy—static and dynamic 342
Static stabilizers 342
Dynamic stabilizers 343
Scapulohumeral rhythm 343
Clinical perspective 344
A practical approach to shoulder pain 344
History 345
Examination 345
Shoulder investigations 352
Impingement 353
Primary external impingement 354
Secondary external impingement 354
Internal impingement 355
Rotator cuff injuries 357
Rotator cuff tendinopathy 357
Rotator cuff tears 359
Glenoid labrum injuries 360
Clinically relevant anatomy 360
Making the diagnosis 360
Treatment 361
Dislocation of the glenohumeral joint 362
Anterior dislocation 362
Posterior dislocation of the glenohumeral joint 363
Shoulder instability 364
Anterior instability 364
Posterior instability 367
Multidirectional instability 367
Adhesive capsulitis ("frozen shoulder") 367
Treatment 367
Fracture of the clavicle 368
Middle-third clavicular fracture 368
Distal clavicle fractures 368
Acromioclavicular joint conditions 369
Acute acromioclavicular joint injuries 369
Chronic acromioclavicular joint pain 371
Referral pain 372
Less common causes of shoulder pain 373
Biceps tendinopathy 373
Rupture of the long head of the biceps 373
Pectoralis major tears 373
Subscapularis muscle tears 373
Nerve entrapments 373
Thoracic outlet syndrome 375
Axillary vein thrombosis ("effort" thrombosis) 376
Fractures around the shoulder joint 376
Principles for shoulder rehabilitation 377
Make a complete and accurate diagnosis 377
Early pain reduction 377
Integration of the kinetic chain into rehabilitation 377
Scapular stabilization 378
Early achievement of 90° of abduction and improved glenohumeral rotation 378
Closed chain rehabilitation 381
Plyometric exercises 382
Rotator cuff exercises 383
Putting it all together—specific rehabilitation protocols 384
Acute phase 384
25 Thoracic and chest pain 449

Thoracic pain 449
Assessment 449
Thoracic intervertebral joint disorders 453
Costovertebral and costotransverse joint disorders 454
Scheuermann's disease 455
Thoracic intervertebral disk prolapse 455
T4 syndrome 455
Postural imbalance of the neck, shoulder and upper thoracic spine 456

Chest pain 456
Assessment 457
Rib trauma 458
Referred pain from the thoracic spine 458
Sternoclavicular joint problems 459
Costochondritis 460
Stress fracture of the ribs 460
Side strain 461
Conclusion 461

26 Low back pain 463

Epidemiology 463
Clinical perspective 463
Conditions causing low back pain in which a definitive diagnosis can be made 464
Somatic low back pain 465
Functional (clinical) instability in low back pain 467
History 468
Examination 468
Investigations 468
Severe low back pain 472
Clinical features of severe acute low back pain 472
Management of severe acute low back pain 472
Mild-to-moderate low back pain 473
Clinical features 474
Treatment of mild-to-moderate low back pain 474
Chronic low back pain 477
Acute nerve root compression 478
Clinical features 480
Treatment 480
Stress fracture of the pars interarticularis 480
Clinical features 480
Treatment 481
Spondylolisthesis 482
Clinical features 483
Treatment 483
Lumbar hypermobility 484
Structural lumbar instability 484
Sacroiliac joint disorders 484
Rehabilitation following low back pain 484
Posture 484
Daily activities 485
Sporting technique 485
Core stability 485
Specific muscle tightness 487
Conclusion 488

27 Buttock pain 492

Clinical approach 492
History 492
Examination 494
Investigations 496
Referred pain from the lumbar spine 497
Sacroiliac joint disorders 498
Functional anatomy 498
Clinical features 500
Treatment 501
Iliolumbar ligament sprain 501
Hamstring origin tendinopathy 503
Fibrous adhesions 503
Ischiogluteal bursitis 504
Myofascial pain 504
Less common causes 504
Quadratus femoris injury 504
Stress fracture of the sacrum 505
Piriformis conditions 505
Posterior thigh compartment syndrome 506
Proximal hamstring avulsion injuries 506
Apophysitis/avulsion fracture of the ischial tuberosity 507
Conditions not to be missed 507
Contents

28 Hip-related pain

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional anatomy and biomechanics</td>
<td>510</td>
</tr>
<tr>
<td>Morphology</td>
<td>510</td>
</tr>
<tr>
<td>Acetabular labrum</td>
<td>511</td>
</tr>
<tr>
<td>Ligaments of the hip</td>
<td>512</td>
</tr>
<tr>
<td>Chondral surfaces</td>
<td>513</td>
</tr>
<tr>
<td>Joint stability and normal muscle function</td>
<td>513</td>
</tr>
<tr>
<td>Clinical perspective: making sense of a complex problem</td>
<td>516</td>
</tr>
<tr>
<td>Femoroacetabular impingement (FAI)</td>
<td>516</td>
</tr>
<tr>
<td>Factors that may contribute to the development of hip-related pain</td>
<td>518</td>
</tr>
<tr>
<td>Extrinsic factors</td>
<td>518</td>
</tr>
<tr>
<td>Intrinsic factors</td>
<td>519</td>
</tr>
<tr>
<td>Clinical assessment</td>
<td>521</td>
</tr>
<tr>
<td>History</td>
<td>521</td>
</tr>
<tr>
<td>Examination</td>
<td>522</td>
</tr>
<tr>
<td>Investigations</td>
<td>525</td>
</tr>
<tr>
<td>Labral tears</td>
<td>526</td>
</tr>
<tr>
<td>Ligamentum teres tears</td>
<td>527</td>
</tr>
<tr>
<td>Synovitis</td>
<td>528</td>
</tr>
<tr>
<td>Chondroplasty</td>
<td>529</td>
</tr>
<tr>
<td>Rehabilitation of the injured hip</td>
<td>530</td>
</tr>
<tr>
<td>Unloading and protecting damaged or potentially vulnerable structures</td>
<td>530</td>
</tr>
<tr>
<td>Restoration of normal dynamic and neuromotor control</td>
<td>530</td>
</tr>
<tr>
<td>Address other remote factors that may be altering the function of the kinetic chain</td>
<td>534</td>
</tr>
<tr>
<td>Surgical management of the injured hip</td>
<td>534</td>
</tr>
<tr>
<td>Rehabilitation following hip arthroscopy</td>
<td>535</td>
</tr>
<tr>
<td>Os acetabulare</td>
<td>536</td>
</tr>
<tr>
<td>Lateral hip pain</td>
<td>538</td>
</tr>
<tr>
<td>Greater trochanter pain syndrome (GTPS)</td>
<td>538</td>
</tr>
<tr>
<td>Gluteus medius tendon tears</td>
<td>540</td>
</tr>
</tbody>
</table>

29 Groin pain

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>545</td>
</tr>
<tr>
<td>Prevalence</td>
<td>545</td>
</tr>
<tr>
<td>Risk factors</td>
<td>547</td>
</tr>
<tr>
<td>Clinical overview</td>
<td>547</td>
</tr>
<tr>
<td>Local overload causing failure of various structures</td>
<td>548</td>
</tr>
<tr>
<td>What role does bone stress play?</td>
<td>549</td>
</tr>
<tr>
<td>Factors that increase local bone stress</td>
<td>550</td>
</tr>
<tr>
<td>Clinical approach</td>
<td>552</td>
</tr>
<tr>
<td>History</td>
<td>552</td>
</tr>
<tr>
<td>Examination</td>
<td>553</td>
</tr>
<tr>
<td>Investigations</td>
<td>558</td>
</tr>
<tr>
<td>Acute adductor strains</td>
<td>559</td>
</tr>
<tr>
<td>Recurrent adductor muscle strain</td>
<td>559</td>
</tr>
<tr>
<td>Adductor-related groin pain</td>
<td>559</td>
</tr>
<tr>
<td>Early warning signs</td>
<td>560</td>
</tr>
<tr>
<td>Treatment</td>
<td>560</td>
</tr>
<tr>
<td>Iliopsoas-related groin pain</td>
<td>565</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>566</td>
</tr>
<tr>
<td>Clinical concepts</td>
<td>566</td>
</tr>
<tr>
<td>Treatment</td>
<td>567</td>
</tr>
<tr>
<td>Abdominal wall–related groin pain</td>
<td>567</td>
</tr>
<tr>
<td>Posterior inguinal wall weakness (sports hernia, sportsman’s hernia)</td>
<td>567</td>
</tr>
<tr>
<td>Gilmore’s groin</td>
<td>568</td>
</tr>
<tr>
<td>Laparoscopic inguinal ligament release</td>
<td>568</td>
</tr>
<tr>
<td>Tear of the external oblique aponeurosis (hockey groin)</td>
<td>568</td>
</tr>
<tr>
<td>Inguinal hernia</td>
<td>569</td>
</tr>
<tr>
<td>Rectus abdominis injuries</td>
<td>569</td>
</tr>
<tr>
<td>Pubic bone stress–related groin pain</td>
<td>569</td>
</tr>
<tr>
<td>Treatment</td>
<td>571</td>
</tr>
<tr>
<td>Less common injuries</td>
<td>572</td>
</tr>
<tr>
<td>Obturator neuropathy</td>
<td>572</td>
</tr>
<tr>
<td>Other nerve entrapments</td>
<td>572</td>
</tr>
<tr>
<td>Stress fractures of the neck of the femur</td>
<td>572</td>
</tr>
<tr>
<td>Stress fracture of the inferior pubic ramus</td>
<td>573</td>
</tr>
<tr>
<td>Referred pain to the groin</td>
<td>574</td>
</tr>
</tbody>
</table>

30 Anterior thigh pain

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical approach</td>
<td>579</td>
</tr>
<tr>
<td>History</td>
<td>579</td>
</tr>
<tr>
<td>Examination</td>
<td>580</td>
</tr>
<tr>
<td>Investigations</td>
<td>581</td>
</tr>
<tr>
<td>Quadriceps contusion</td>
<td>582</td>
</tr>
<tr>
<td>Treatment</td>
<td>583</td>
</tr>
<tr>
<td>Acute compartment syndrome of the thigh</td>
<td>586</td>
</tr>
<tr>
<td>Myositis ossificans</td>
<td>587</td>
</tr>
<tr>
<td>Quadriceps muscle strain</td>
<td>587</td>
</tr>
<tr>
<td>Distal quadriceps muscle strain</td>
<td>588</td>
</tr>
<tr>
<td>Proximal rectus femoris strains</td>
<td>589</td>
</tr>
</tbody>
</table>
Differentiating between a mild quadriceps strain and a quadriceps contusion 590
Less common causes
 Stress fracture of the femur 590
 Lateral femoral cutaneous nerve injury ("meralgia paresthetica") 591
 Femoral nerve injury 592
 Referred pain 592

31 Posterior thigh pain 594
Functional anatomy 594
Clinical reasoning
 History 596
 Examination 597
 Investigations 599
 Integrating the clinical assessment and investigation to make a diagnosis 600
Acute hamstring muscle strains
 Epidemiology 600
 Types of acute hamstring strains 600
 Management of hamstring injuries 603
Risk factors for acute hamstring strain 615
 Intrinsic risk factors 615
 Extrinsic risk factors 616
Prevention of hamstring strains
 Nordic drops and other eccentric exercises 616
 Balance exercises/proprioception training 616
 Soft tissue therapy 617
 A promising clinical approach for the high-risk athlete 617
Referred pain to posterior thigh
 Trigger points 618
 Lumbar spine 618
 Sacroiliac complex 619
Other hamstring injuries
 Avulsion of the hamstring from the ischial tuberosity 620
 Common conjoint tendon tear 620
 Upper hamstring tendinopathy 620
 Lower hamstring tendinopathy 621
Less common causes
 Nerve entrapments 621
 Ischial bursitis 621
 Adductor magnus strains 621

Compartment syndrome of the posterior thigh 621
Vascular 621

32 Acute knee injuries 626
Functional anatomy 626
Clinical perspective
 Does this patient have a significant knee injury? 627
 History 627
 Examination 629
 Investigations 633
Meniscal injuries
 Clinical features 635
 Treatment 635
 Rehabilitation after meniscal surgery 636
Medial collateral ligament (MCL) injury
 Treatment 638
Anterior cruciate ligament (ACL) tears
 Clinical features 639
 Surgical or non-surgical treatment of the torn ACL? 647
 Surgical treatment 650
 Combined injuries 652
 Rehabilitation after ACL injury 652
 Problems encountered during ACL rehabilitation 656
 Outcomes after ACL treatment 657
 Mechanism of ACL injury as a step toward prevention 659
Posterior cruciate ligament (PCL) tears 668
 Clinical features 668
 Treatment 669
Lateral collateral ligament (LCL) tears 669
Articular cartilage damage
 Classification 669
 Treatment 671
Acute patellar trauma
 Fracture of the patella 673
 Patellar dislocation 674
Less common causes
 Patellar tendon rupture 675
 Quadriceps tendon rupture 675
 Bursal hematoma 677
Contents

Fat pad impingement 677
Fracture of the tibial plateau 677
Superior tibiofibular joint injury 677
Ruptured hamstring tendon 677
Coronary ligament sprain 677

33 Anterior knee pain 684

Clinical approach 685
History 685
Examination 687
Investigations 689

Patellofemoral pain 689
What is patellofemoral pain syndrome? 689
Functional anatomy 690
Factors that may contribute to pain 690
Treatment of patellofemoral pain 693

Patellofemoral instability 700
Primary patellofemoral instability 700
Secondary patellofemoral instability 700

Patellar tendinopathy 700
Nomenclature 701
Pathology and pathogenesis of patellar tendinopathy 701
Clinical features 701
Investigations 701
Treatment 702
Partial patellar tendon tear 707

Less common causes 707
Fat pad irritation/impingement (insidious onset) 707
Osgood-Schlatter lesion 708
Sinding-Larsen–Johansson lesion 708
Quadriiceps tendinopathy 708
Bursitis 709
Synovial plica 709

34 Lateral, medial, and posterior knee pain 715

Lateral knee pain 715
Clinical approach 716
Iliotibial band friction syndrome 718
Lateral meniscus abnormality 722
Osteoarthritis of the lateral compartment of the knee 723
Excessive lateral pressure syndrome 723
Biceps femoris tendinopathy 724
Superior tibiofibular joint injury 724
Referred pain 725

Medial knee pain 725
Patellofemoral syndrome 725
Medial meniscus abnormality 726
Osteoarthritis of the medial compartment of the knee 726
Pes anserinus tendinopathy/bursitis 727
Pellegrini-Stieda syndrome 728
Medial collateral ligament grade 1 sprain 728

Posterior knee pain 728
Clinical evaluation 728
Popliteus tendinopathy 730
Gastrocnemius tendinopathy 731
Baker’s cyst 731
Other causes of posterior knee pain 732

35 Leg pain 735

Clinical perspective 735
Role of biomechanics 736
History 738
Examination 738
Investigations 743

Medial tibial stress fracture 745
Assessment 746
Treatment 746
Prevention of recurrence 747
Stress fracture of the anterior cortex of the tibia 747
Treatment 747

Medial tibial stress syndrome 748
Treatment 749

Chronic exertional compartment syndrome 750
Deep posterior compartment syndrome 752
Anterior and lateral exertional compartment syndromes 753
Outcomes of surgical treatment of exertional compartment syndrome 754
Rehabilitation following compartment syndrome surgery 755

Less common causes 755
Stress fracture of the fibula 755
Referred pain 755
Nerve entrapments 756

33 Anterior knee pain

Clinical approach 685
History 685
Examination 687
Investigations 689

Patellofemoral pain 689
What is patellofemoral pain syndrome? 689
Functional anatomy 690
Factors that may contribute to pain 690
Treatment of patellofemoral pain 693

Patellofemoral instability 700
Primary patellofemoral instability 700
Secondary patellofemoral instability 700

Patellar tendinopathy 700
Nomenclature 701
Pathology and pathogenesis of patellar tendinopathy 701
Clinical features 701
Investigations 701
Treatment 702
Partial patellar tendon tear 707

Less common causes 707
Fat pad irritation/impingement (insidious onset) 707
Osgood-Schlatter lesion 708
Sinding-Larsen–Johansson lesion 708
Quadriiceps tendinopathy 708
Bursitis 709
Synovial plica 709

34 Lateral, medial, and posterior knee pain 715

Lateral knee pain 715
Clinical approach 716
Iliotibial band friction syndrome 718
Lateral meniscus abnormality 722
Osteoarthritis of the lateral compartment of the knee 723
Excessive lateral pressure syndrome 723
Biceps femoris tendinopathy 724
Superior tibiofibular joint injury 724
Referred pain 725

Medial knee pain 725
Patellofemoral syndrome 725
Medial meniscus abnormality 726
Osteoarthritis of the medial compartment of the knee 726
Pes anserinus tendinopathy/bursitis 727
Pellegrini-Stieda syndrome 728
Medial collateral ligament grade 1 sprain 728

Posterior knee pain 728
Clinical evaluation 728
Popliteus tendinopathy 730
Gastrocnemius tendinopathy 731
Baker’s cyst 731
Other causes of posterior knee pain 732

35 Leg pain 735

Clinical perspective 735
Role of biomechanics 736
History 738
Examination 738
Investigations 743

Medial tibial stress fracture 745
Assessment 746
Treatment 746
Prevention of recurrence 747
Stress fracture of the anterior cortex of the tibia 747
Treatment 747

Medial tibial stress syndrome 748
Treatment 749

Chronic exertional compartment syndrome 750
Deep posterior compartment syndrome 752
Anterior and lateral exertional compartment syndromes 753
Outcomes of surgical treatment of exertional compartment syndrome 754
Rehabilitation following compartment syndrome surgery 755

Less common causes 755
Stress fracture of the fibula 755
Referred pain 755
Nerve entrapments 756

33 Anterior knee pain

Clinical approach 685
History 685
Examination 687
Investigations 689

Patellofemoral pain 689
What is patellofemoral pain syndrome? 689
Functional anatomy 690
Factors that may contribute to pain 690
Treatment of patellofemoral pain 693

Patellofemoral instability 700
Primary patellofemoral instability 700
Secondary patellofemoral instability 700

Patellar tendinopathy 700
Nomenclature 701
Pathology and pathogenesis of patellar tendinopathy 701
Clinical features 701
Investigations 701
Treatment 702
Partial patellar tendon tear 707

Less common causes 707
Fat pad irritation/impingement (insidious onset) 707
Osgood-Schlatter lesion 708
Sinding-Larsen–Johansson lesion 708
Quadriiceps tendinopathy 708
Bursitis 709
Synovial plica 709

34 Lateral, medial, and posterior knee pain 715

Lateral knee pain 715
Clinical approach 716
Iliotibial band friction syndrome 718
Lateral meniscus abnormality 722
Osteoarthritis of the lateral compartment of the knee 723
Excessive lateral pressure syndrome 723
Biceps femoris tendinopathy 724
Superior tibiofibular joint injury 724
Referred pain 725

Medial knee pain 725
Patellofemoral syndrome 725
Medial meniscus abnormality 726
Osteoarthritis of the medial compartment of the knee 726
Pes anserinus tendinopathy/bursitis 727
Pellegrini-Stieda syndrome 728
Medial collateral ligament grade 1 sprain 728

Posterior knee pain 728
Clinical evaluation 728
Popliteus tendinopathy 730
Gastrocnemius tendinopathy 731
Baker’s cyst 731
Other causes of posterior knee pain 732

35 Leg pain 735

Clinical perspective 735
Role of biomechanics 736
History 738
Examination 738
Investigations 743

Medial tibial stress fracture 745
Assessment 746
Treatment 746
Prevention of recurrence 747
Stress fracture of the anterior cortex of the tibia 747
Treatment 747

Medial tibial stress syndrome 748
Treatment 749

Chronic exertional compartment syndrome 750
Deep posterior compartment syndrome 752
Anterior and lateral exertional compartment syndromes 753
Outcomes of surgical treatment of exertional compartment syndrome 754
Rehabilitation following compartment syndrome surgery 755

Less common causes 755
Stress fracture of the fibula 755
Referred pain 755
Nerve entrapments 756
Contents

Post-traumatic synovitis 824
Sinus tarsi syndrome 824
Complex regional pain syndrome type 1 825

39 Ankle pain 828

Medial ankle pain 828
 Clinical perspective 828
 Tibialis posterior tendinopathy 830
 Flexor hallucis longus tendinopathy 832
 Tarsal tunnel syndrome 833
 Stress fracture of the medial malleolus 834
 Medial calcaneal nerve entrapment 835
 Other causes of medial ankle pain 835

Lateral ankle pain 835
 Examination 836
 Peroneal tendinopathy 836
 Sinus tarsi syndrome 837
 Anterolateral impingement 838
 Posterior impingement syndrome 839
 Stress fracture of the talus 839
 Referred pain 839

Anterior ankle pain 840
 Anterior impingement of the ankle 840
 Tibialis anterior tendinopathy 841
 Anteroinferior tibiofibular joint injury (AITFL) 842

40 Foot pain 844

Rear foot pain 844
 Clinical perspective 846
 Plantar fasciitis 847
 Fat pad contusion 850
 Calcaneal stress fractures 851
 Lateral plantar nerve entrapment 851

Midfoot pain 852
 Clinical perspective 852
 Stress fracture of the navicular 853
 Extensor tendinopathy 855
 Midtarsal joint sprains 855
 Lisfranc joint injuries 856
 Less common causes of midtarsal joint pain 859

Forefoot pain 861
 Clinical perspective 861
 Stress fractures of the metatarsals 862
 Stress fracture of the base of the second metatarsal 864
 Fractures of the fifth metatarsal 865
 Metatarsophalangeal joint synovitis 866
 First metatarsophalangeal joint sprain (“turf toe”) 867
 Hallux limitus 868
 Hallux valgus (“bunion”) 869
 Sesamoid injuries 869
 Plantar plate tear 870
 Stress fracture of the great toe 872
 Freiberg’s osteochondritis 872
 Joplin’s neuritis 872
 Morton’s interdigital neuroma 872
 Toe clawing 872
 Corns and calluses 873
 Plantar warts 874
 Subungal hematoma 873
 Subungal exostosis 874
 Onychocryptosis 875

41 The patient with longstanding symptoms: clinical pearls 878

Diagnosis—is it correct? 878
 History 879
 Examination 881
 Investigations 882

Time to revisit treatment 883
 Is there a persisting cause? 883
 Obtain details of treatment 883
 Make the multidisciplinary team available 885

Keeping professional ethics in mind 885

Summary 885

42 The younger athlete 888

The uniqueness of the young athlete 888
 Nonlinearity of growth 888
 Maturity-associated variation 888
 Unique response to skeletal injury 889

Management of musculoskeletal conditions 890
 Acute fractures 890

Part C Special groups of participants
Shoulder pain 892
Elbow pain 893
Wrist pain 893
Back pain and postural abnormalities 894
Hip pain 895
Knee pain 897
Painless abnormalities of gait 899
Foot pain 900
Guidelines for participation and injury prevention 901
Resistance training: a special case 901
Nutrition for the younger athlete 902
Energy 903
Protein 903
Carbohydrates 903
Fat 903
Vitamins and minerals 904
Thermoregulation and hydration 904
Violence in youth sport 904
The “ugly parent” syndrome 905
Coaches’ role 905

43 Women and activity-related issues across the lifespan 910

Overview 910
Sex and gender differences 910
The lifespan approach to women and physical activity 911
Girlhood 911
Adolescence 912
Effect of the menstrual cycle on performance 913
Menstrual irregularities associated with exercise 914
Complications of exercise-associated menstrual cycle irregularities 916
Treatment of exercise-associated menstrual cycle irregularities 918
Eating disorders and intense athletic activity 919

Older adult 926
Menopause 926
Osteoporosis 926
Coronary heart disease 928
The pelvic floor and continence issues 928
Exercise guidelines 929

44 The older person who exercises 936

Successful aging 936
The cardiovascular system 936
The respiratory system 937
Diabetes 937
Osteoarthritis 937
Bone health and prevention of fall-related fractures 937
Psychological function 937

Risks of exercise in the older person 937
Reducing the risks of exercise 937
Exercise prescription for the older person 938
The inactive older person 938
The generally active older person 938

Interaction between medication and exercise in the older person 939
Medications affecting the renin–angiotensin system 939
Beta blockers 939
Diuretics 939
Other cardiac drugs 939
Nonsteroidal anti-inflammatory drugs 939
Medications affecting the central nervous system 940
Insulin and oral hypoglycemic drugs 940

45 Military personnel 943

Special culture among military personnel 943
Epidemiology of military injuries 944
Common military injuries 945
Overuse injuries of the lower limb 946
Blister injuries 946
Parachuting injuries 947
The aging defense forces 948

Injury prevention strategies in the military 948
Injury surveillance 948
Females and injury risk 949
Contents

Body composition 951
Previous injury 952
Weekly running distance 952
Running experience 953
Competitive behaviors 954
Warm-up/stretching 954
Conclusion 954

46 The athlete with a disability 960

Historical perspective 960
Health benefits of physical activity 961
Choosing a suitable sport 961
The sportsperson with a physical disability 962
Spinal cord injury and sports medicine 962
The sportsperson with a limb deficiency 964
The sportsperson with cerebral palsy 965
The sportsperson classified as Les Autres 965
The sportsperson with visual impairment 965
The sportsperson with an intellectual impairment 966
Classification 966
Adapting performance testing and training for disabled sportspeople 967
Winter sports and common injuries 968
Anti-doping issues 968
Travel with teams 968

PART D Management of medical problems

47 Medical emergencies in the sporting context 972

The role of the physiotherapist in emergency care 972
Emergency care principles 972
Preparation 973
Triage 973
Primary survey 973
Resuscitate and stabilize 975
Focused history 975
Secondary survey 975
Reassessment 976

Definitive care 976
The primary survey in detail 976
Basic life support 976
Airway with cervical spine control 977
Breathing and ventilation 986
Circulation and hemorrhage control 988
Disability (and neurological status) 991
Exposure and environment control 992
Appropriate use of analgesia in trauma 994
Recommended general and emergency medical equipment 994

48 Sudden cardiac death in sport 996

Incidence of sudden cardiac death 996
Sex and race as risk factors 997
Which sports carry the highest risk 998
Etiology of sudden cardiac death in athletes 998
Overview 998
SCD due to congenital or genetic structural heart disease 1000
SCD due to congenital or genetic abnormalities predisposing to primary electrical disorders of the heart 1005
SCD due to acquired cardiac abnormalities 1008
Evaluation of an athlete for conditions causing sudden cardiac death 1008
History 1008
Physical examination 1009
12-lead ECG/EKG 1009
Echocardiography 1009
Further investigations 1009
Purpose of screening 1013
Primary prevention of SCD in athletes—pre-participation cardiovascular screening 1013
Secondary prevention—responding when an athlete has collapsed 1014
Recognition of sudden cardiac arrest 1014
Management of sudden cardiac arrest 1014
Cardiopulmonary resuscitation 1015
Early defibrillation 1015

xxiv
49 Managing cardiovascular symptoms in sportspeople

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular symptoms: potentially life or death decisions</td>
<td>1024</td>
</tr>
<tr>
<td>The clinical approach to potentially important cardiac symptoms</td>
<td>1025</td>
</tr>
<tr>
<td>Clinical approach to symptoms associated with cardiac conditions</td>
<td>1025</td>
</tr>
<tr>
<td>Syncope/near-syncope</td>
<td>1026</td>
</tr>
<tr>
<td>Unexplained seizure activity</td>
<td>1027</td>
</tr>
<tr>
<td>Exertional chest pain</td>
<td>1028</td>
</tr>
<tr>
<td>Palpitations</td>
<td>1028</td>
</tr>
<tr>
<td>Excessive fatigue or dyspnea with exertion</td>
<td>1029</td>
</tr>
<tr>
<td>Clinical approach to physical examination findings</td>
<td>1029</td>
</tr>
<tr>
<td>Specific physical examination findings</td>
<td>1030</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1030</td>
</tr>
<tr>
<td>Heart murmur</td>
<td>1031</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>1031</td>
</tr>
<tr>
<td>Non-invasive cardiovascular testing</td>
<td>1032</td>
</tr>
<tr>
<td>Electrocardiogram (ECG/EKG)</td>
<td>1032</td>
</tr>
<tr>
<td>Echocardiography and associated tests for structural disease (cardiac CT, MRI)</td>
<td>1033</td>
</tr>
<tr>
<td>Genetic testing when there is a family history of early sudden cardiac death?</td>
<td>1033</td>
</tr>
<tr>
<td>Temporary and permanent disqualification from sports</td>
<td>1035</td>
</tr>
<tr>
<td>Summary</td>
<td>1035</td>
</tr>
</tbody>
</table>

50 Respiratory symptoms during exercise

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common respiratory symptoms</td>
<td>1038</td>
</tr>
<tr>
<td>Shortness of breath and wheeze</td>
<td>1038</td>
</tr>
<tr>
<td>Cough</td>
<td>1039</td>
</tr>
<tr>
<td>Chest pain or tightness</td>
<td>1039</td>
</tr>
<tr>
<td>Asthma</td>
<td>1040</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>1040</td>
</tr>
<tr>
<td>Clinical features</td>
<td>1040</td>
</tr>
<tr>
<td>Types of asthma</td>
<td>1040</td>
</tr>
<tr>
<td>Precipitating factors</td>
<td>1041</td>
</tr>
<tr>
<td>Risk factors</td>
<td>1041</td>
</tr>
<tr>
<td>Asthma management</td>
<td>1042</td>
</tr>
<tr>
<td>Exercise-induced bronchospasm</td>
<td>1042</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>1042</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>1043</td>
</tr>
<tr>
<td>Etiology</td>
<td>1043</td>
</tr>
<tr>
<td>Clinical features</td>
<td>1043</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>1043</td>
</tr>
<tr>
<td>Bronchial provocation challenge tests</td>
<td>1044</td>
</tr>
<tr>
<td>Treatment</td>
<td>1047</td>
</tr>
<tr>
<td>Conditions that may mimic exercise-induced bronchospasm</td>
<td>1049</td>
</tr>
<tr>
<td>Sinus-related symptoms</td>
<td>1051</td>
</tr>
<tr>
<td>Investigations</td>
<td>1051</td>
</tr>
<tr>
<td>Management of sinusitis</td>
<td>1051</td>
</tr>
<tr>
<td>Other exercise-related conditions</td>
<td>1052</td>
</tr>
<tr>
<td>Exercise-induced anaphylaxis</td>
<td>1052</td>
</tr>
<tr>
<td>Cholinergic urticaria</td>
<td>1052</td>
</tr>
<tr>
<td>Exercise-induced angioedema</td>
<td>1052</td>
</tr>
</tbody>
</table>

51 Gastrointestinal symptoms during exercise

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper gastrointestinal symptoms</td>
<td>1057</td>
</tr>
<tr>
<td>Treatment</td>
<td>1057</td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>1057</td>
</tr>
<tr>
<td>Treatment</td>
<td>1058</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1058</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1058</td>
</tr>
<tr>
<td>Treatment</td>
<td>1059</td>
</tr>
<tr>
<td>Exercise and gastrointestinal diseases</td>
<td>1059</td>
</tr>
<tr>
<td>Lactose intolerance</td>
<td>1059</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>1059</td>
</tr>
<tr>
<td>Irritable bowel syndrome</td>
<td>1059</td>
</tr>
<tr>
<td>Non-steroidal anti-inflammatory drugs (NSAIDs) and the gastrointestinal tract</td>
<td>1059</td>
</tr>
<tr>
<td>Prevention of gastrointestinal symptoms that occur with exercise</td>
<td>1060</td>
</tr>
<tr>
<td>Limit dietary fiber intake prior to competition</td>
<td>1060</td>
</tr>
<tr>
<td>Avoid solid foods during the last three hours prior to the race</td>
<td>1061</td>
</tr>
<tr>
<td>Select the pre-event meal carefully</td>
<td>1061</td>
</tr>
<tr>
<td>Prevent dehydration</td>
<td>1061</td>
</tr>
<tr>
<td>Avoid fat and protein intake during exercise</td>
<td>1061</td>
</tr>
<tr>
<td>Sample pre-event diet</td>
<td>1061</td>
</tr>
<tr>
<td>Consult a sports psychologist</td>
<td>1061</td>
</tr>
</tbody>
</table>
52 Renal symptoms during exercise 1063

Clinical anatomy and physiology 1063
Exercise-related renal impairment 1064
 Rhabdomyolysis and myoglobinuria 1064
 Other exercise-related renal impairment 1065
Clinical approach to the athlete presenting with hematuria 1065
Clinical approach to the athlete presenting with proteinuria 1065
Non-steroidal anti-inflammatory drugs (NSAIDs) and the kidney 1066
Exercise and the patient with renal impairment 1066
 Exercise for patients with renal transplantation 1067
Prevention of renal complications of exercise 1067

53 Diabetes mellitus 1070

Types of diabetes 1070
 Type 1 diabetes 1070
 Type 2 diabetes 1070
Clinical perspective 1070
 Diagnosis 1070
 Pre-exercise screening for people with diabetes 1071
 Complications 1071
Treatment 1071
 Pharmacotherapy in diabetes 1071
 Dietary management 1072
Exercise and diabetes 1073
 Benefits of exercise 1074
 Exercise and type 1 diabetes 1074
 Exercise and type 2 diabetes 1075
 Diabetes and competition 1075
 Diabetes and travel 1075
 High-risk sports 1075
 Exercise and the complications of diabetes 1075
Complications of exercise in the diabetic sportsperson 1078
 Hypoglycemia 1078
 Diabetic ketoacidosis in the athlete 1079
 Musculoskeletal manifestations of diabetes 1079
Conclusion 1080

54 Exercise to treat neurological diseases and improve mental health 1082

Stroke 1082
 Effects of physical activity on stroke mortality 1082
 Effect of physical activity in the treatment of stroke patients 1082
 What exercise or physical activity program should be used? 1083
Parkinson's disease 1083
 Does physical activity prevent the onset of Parkinson's disease? 1083
 Does physical activity reduce symptoms of Parkinson's disease? 1083
 What exercise or physical activity program should be used? 1084
Multiple sclerosis 1084
 Does physical activity prevent the onset of multiple sclerosis or cause exacerbations? 1084
 Does physical activity reduce symptoms of multiple sclerosis? 1084
 What exercise or physical activity program should be used? 1085
 Special considerations for exercise in patients with multiple sclerosis 1085
Dizziness 1085
 Does physical activity prevent the onset of dizziness 1086
 Does physical activity reduce dizziness symptoms 1086
 What exercise or physical activity program should be used 1086
Mild cognitive impairment and dementia 1086
 Does physical activity prevent the onset of cognitive impairment and dementia 1087
 Does physical activity minimize the progression of cognitive impairment and reduce dementia symptoms 1087
 Mechanisms that underpin the effect of exercise 1087
Depression 1088
 Does physical activity prevent the onset of mood disorders? 1088
 Does physical activity reduce depression symptoms? 1089
Contents

<table>
<thead>
<tr>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 Joint-related symptoms without acute injury</td>
<td></td>
</tr>
<tr>
<td>The patient with a single swollen joint</td>
<td>1093</td>
</tr>
<tr>
<td>Clinical perspective</td>
<td>1093</td>
</tr>
<tr>
<td>The patient with low back pain and stiffness</td>
<td>1096</td>
</tr>
<tr>
<td>Clinical perspective</td>
<td>1096</td>
</tr>
<tr>
<td>The patient presenting with multiple painful joints</td>
<td>1097</td>
</tr>
<tr>
<td>Clinical perspective</td>
<td>1097</td>
</tr>
<tr>
<td>The patient with joint pain who “hurts all over”</td>
<td>1099</td>
</tr>
<tr>
<td>Ordering and interpreting rheumatological tests</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid factor</td>
<td>1100</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>1100</td>
</tr>
<tr>
<td>Antinuclear antibodies</td>
<td>1100</td>
</tr>
<tr>
<td>HLA B27</td>
<td>1100</td>
</tr>
<tr>
<td>Serum uric acid</td>
<td>1101</td>
</tr>
<tr>
<td>56 Common sports-related infections</td>
<td>1102</td>
</tr>
<tr>
<td>Exercise and infection</td>
<td></td>
</tr>
<tr>
<td>Exercise and the immune system</td>
<td>1102</td>
</tr>
<tr>
<td>Exercise and clinical infections</td>
<td>1103</td>
</tr>
<tr>
<td>Infection and athletic performance</td>
<td>1104</td>
</tr>
<tr>
<td>Common infections in athletes</td>
<td></td>
</tr>
<tr>
<td>Skin infections</td>
<td>1105</td>
</tr>
<tr>
<td>Respiratory and ear nose and throat infections</td>
<td>1105</td>
</tr>
<tr>
<td>Gastrointestinal and liver infections</td>
<td>1108</td>
</tr>
<tr>
<td>Other infections</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV)</td>
<td>1113</td>
</tr>
<tr>
<td>Sexually transmitted infections</td>
<td>1114</td>
</tr>
<tr>
<td>Tetanus</td>
<td>1114</td>
</tr>
<tr>
<td>Preventative measures and reducing risk of infections</td>
<td>1114</td>
</tr>
<tr>
<td>57 The tired athlete</td>
<td>1118</td>
</tr>
<tr>
<td>Clinical perspective</td>
<td>1119</td>
</tr>
<tr>
<td>History</td>
<td>1119</td>
</tr>
<tr>
<td>Examination</td>
<td>1120</td>
</tr>
<tr>
<td>Investigations</td>
<td>1120</td>
</tr>
<tr>
<td>58 Exercise in the heat</td>
<td>1132</td>
</tr>
<tr>
<td>Mechanisms of heat gain and loss</td>
<td></td>
</tr>
<tr>
<td>Clinical perspective</td>
<td>1133</td>
</tr>
<tr>
<td>Heatstroke—a temperature above 41°C (106°F)</td>
<td></td>
</tr>
<tr>
<td>Management of heatstroke</td>
<td>1135</td>
</tr>
<tr>
<td>Is hospital admission indicated?</td>
<td>1135</td>
</tr>
<tr>
<td>Complications of heatstroke</td>
<td>1136</td>
</tr>
<tr>
<td>Exercise-associated collapse</td>
<td>1137</td>
</tr>
<tr>
<td>Management of exercise-associated collapse/exercise-associated postural hypotension (EAPH)</td>
<td>1137</td>
</tr>
<tr>
<td>Cramps</td>
<td>1138</td>
</tr>
<tr>
<td>Management of cramps</td>
<td>1138</td>
</tr>
<tr>
<td>Fluid overload: hyponatremia</td>
<td>1138</td>
</tr>
</tbody>
</table>
Contents

Management of exercise-induced hyponatremia (EAH) and exercise-associated postural hypotension (EAHE) 1139
Etiology of EAH and EAHE 1139
Other causes of exercise-related collapse in hot weather 1141
Heat acclimatization 1142

59 Exercise at the extremes of cold and altitude 1146
Generation of body heat 1146
Heat loss 1146
Minimizing heat loss 1146
Measurement of body temperature 1147
Effects of hypothermia 1147
Cardiovascular effects 1147
Respiratory effects 1147
Other effects 1147
General principles of managing hypothermia 1147
Clinical features of hypothermia 1148
Methods to achieve rewarming 1148
Passive rewarming 1148
Active rewarming 1148
Other rewarming methods 1148
Treatment of hypothermia in sport 1149
Treatment of mild hypothermia 1149
Treatment of moderate hypothermia 1149
Treatment of severe hypothermia 1149
Treatment of immersion hypothermia 1149
Frostbite 1150
Superficial frostbite—management 1150
Deep frostbite—management 1150
Prevention of cold injuries 1150
Exercise and physical activity at altitude 1151
Itinerary—ascent rate 1151
Previous altitude history 1151
Patient characteristics and previous medical history 1152
General preventive measures 1153
Prophylactic medications 1154
Specific issues for sportspeople 1155
Summary 1155

60 Quick exercise prescriptions for specific medical conditions 1158
Introduction 1158
Obesity 1160
Cardiovascular disease 1160
Myocardial infarction 1161
Post–cardiac surgery 1161
Cardiac insufficiency 1162
Hypertension 1163
Hyperlipidemia 1164
Chronic obstructive pulmonary disease 1164
Asthma 1164
Diabetes 1165
End-stage renal disease 1166
Cancer 1166
Arthritis 1167
Low back pain 1168
Promotion of bone health and prevention of fall-related fractures (for patients diagnosed with osteoporosis) 1168
Parkinson’s disease 1169
Depressive symptoms 1169

PART E Practical sports medicine

61 The preparticipation physical evaluation 1176
Objectives 1176
Setting the tone 1176
Specific objectives 1176
Who should undergo the PPE? 1178
Who should perform the PPE? 1178
When to perform the PPE? 1178
Where to conduct the PPE? 1178
What to include in the PPE? 1179
History 1179
Physical examination 1179
Diagnostic tests 1179
What is “clearance”? 1181
Conclusions 1182
62 Screening the elite sportsperson

- Aims of screening an elite sportsperson
- Additional benefits of screening
- When should sportspersons be screened?

The screening protocol

- The medical screening
 - Cardiovascular screening
 - Medical health
 - Baseline data collection

Musculoskeletal screening

- Which tests?
- Imaging
- Injury prevention

Performance screening

Advantages and disadvantages of screening

Professional relationship with the sportsperson

Education

Problems

63 Providing team care

- The off-field team
 - Coaching and fitness staff
- Pre-season assessment

Educate team members—health literacy

Other essentials

Facilities

Record-keeping

Confidentiality

The “team clinician’s bag”

Being part of the “team chemistry”

64 Traveling with a team

Preparation

- Things to do before travel
- Assessing team members’ fitness prior to departure

Advice for team members

The medical bag

Clinician’s hip bag

Self-preparation

Air travel and jet lag

Pathophysiology

- Prevention of jet lag
- Timed light exposure and avoidance
- Timed melatonin pills
- Pre-travel sleeping schedule
- Synergistic approach
- Symptomatic treatment for jet lag

The medical room

Illness

- Traveler’s diarrhea
- Upper respiratory tract infections

Injury

Drug testing

Local contacts

Psychological skills

Personal coping skills—sustainability

65 Medical coverage of endurance events

Race organization

The medical team

First-aid stations

Medical facility at the race finish

Conclusion

66 Drugs and the athlete

Non-approved substances at all times (in and out of competition)

Prohibited substances all times (in and out of competition)

- Anabolic agents
- Peptide hormones, growth factors and related substances
- Beta-2 agonists
- Hormone antagonists and modulators
- Diuretics and other masking agents

Prohibited methods at all times (in and out of competition)

- Enhancement of oxygen transfer
- Chemical and physical manipulation
- Gene doping

Prohibited substances in-competition

- Stimulants
- Narcotics
- Cannabinoids
“Helping clinicians help patients” has been the clear focus of *Clinical Sports Medicine* from its inception. This fourth edition (CSM4) builds unashamedly on its 20-year history. Twenty-year history? The more than 100 contributing authors average 15 years of practical experience each, so you are holding well over 1500 years of distilled clinical wisdom in your hand!

If you will permit us some level 5 evidence (expert opinion—see all-new Chapter 3), CSM4 provides clinicians in sports and exercise medicine and physiotherapy/physical therapy at least five major benefits:

- The wholehearted commitment from leading clinical faculty from all over the English-speaking world means that CSM4 provides the reader with an authoritative text—you can trust these authors.
- At 1270 pages and 67 chapters, CSM4 already carries 25% more pages than the best-selling third edition. Our ruthless editing to focus on clinical relevance means this edition contains 40% new material. CSM4 provides a comprehensive base for your clinical library. We provide some specific examples below.
- With more than 1000 color images (photos and graphics), the book paints a million words (1000 pictures each painting 1000 words!) over and above its 1270 pages! More than 200 of those images are new to this edition—customized for CSM4’s learners—further extending the book’s clarity and usability.
- Every copy of CSM4 comes with a code that gives you online access to more than four hours of assessment and treatment video and audio material. Called *Clinical Sports Medicine* masterclasses, this material is integrated with the text and will be free of charge to book owners for 12 months from registration at www.clinicalsportsmedicine.com. You have “the expert in the room.”
- Reflecting the expanding evidence base for our field, we include an introduction to evidence-based practice (Chapter 3). All authors aimed to incorporate the best available level of evidence via text, tables, and current references. The online content of CSM4 will benefit from regular updates, adding further to the usefulness of this text for busy clinicians.

In short, CSM4 provides excellent value as an authoritative clinical foundation for physiotherapists, medical practitioners, osteopaths, massage therapists, podiatrists, sports/athletic trainers, sports therapists, fitness leaders, and nurses. It has also proven popular for students in sports physiotherapy, medicine, and human movement studies/kinesiology.

Editors and authors

As the task of editing a book of this magnitude was beyond the two of us, the CSM4 reader now benefits from the wisdom and productivity of seven sports and exercise medicine greats—Roald Bahr, Steven Blair, Jill Cook, Kay Crossley, Jenny McConnell, Paul McCrory, and Timothy Noakes.

The quality of our chapter authors, representing more than 14 countries, grows with each edition. Among our all-star cast, we are particularly grateful to Håkan Alfredson, Elizabeth Arendt, Carl Askling, Kim Bennell, John Drezner, Richard Frobell, Per Holmich, Mark Hutchinson, Gwen Jull, Pekka Kannus, Ben Kibler, Nicola Maffulli, Lorimer Moseley, George Murrell, Kevin Singer, and Willem van Mechelen.
New chapters
The new chapters in this edition are:
Chapter 1 Sports and exercise medicine: addressing the world’s greatest public health problem
Chapter 3 Integrating evidence into clinical practice to make quality decisions
Chapter 4 Sports injuries: acute
Chapter 5 Sports injuries: overuse
Chapter 16 Principles of physical activity promotion for clinicians
Chapter 23 Wrist pain
Chapter 24 Hand and finger injuries
Chapter 28 Hip-related pain
Chapter 45 Military personnel
Chapter 47 Medical emergencies in the sporting context
Chapter 48 Sudden cardiac death in sport
Chapter 52 Renal symptoms during exercise
Chapter 54 Exercise to treat neurological diseases and improve mental health

A plethora of new, clinically relevant content
Here is just a sampler of new approaches to specific “hot topics” with a few of the contributing authors:
• The all-new Chapter 28 Hip-related pain clarifies the concept of femoroacetabular impingement (FAI), its diagnosis and management
• The latest concussion guidelines based on the Zurich consensus meeting (with Paul McCrory)
• A fully revamped discussion of neck pain (with Gwen Jull)
• Further tips on management of tendinopathies (with Jill Cook, Hakan Alfredson, and Ben Kibler)
• Discussion of whether ACL injuries should be managed operatively or conservatively (with Richard Frobell and Liza Arendt)
• A revolution in pain science and its implications for clinical practice (with Lorimer Moseley)
• How to prevent hamstring problems from being a major burden—prevention and treatment strategies (with Carl Askling and Anthony Schache)
• A practical approach to leg pain, including compartment pressure testing (with Mark Hutchinson and a demonstration on the masterclasses website)
• How to manage the patient who has seen everyone—and now wants a miracle cure from you (with Jim Macintyre)
• Prevention of sudden cardiac death and a practical approach to sports cardiology (with Jon Drezner and Sanjay Sharma)
• Exercise in the heat as well as prevention of hyponatremia (with Tim Noakes)
• Drugs—based on latest WADA guidelines

We could have made this list much longer but instead we use a toll-free part of the Clinical Sports Medicine masterclasses website (www.clinicalsportsmedicine.com) to take you on a tour.

No single profession has all the answers required to treat the ill or injured sportsperson and to provide exercise advice as needed. CSM4 was created by a champion team of co-authors and critical reviewers tremendously committed to the vision of “Helping clinicians help patients.” We are confident that whatever your training, Clinical Sports Medicine fourth edition will reinforce and refine existing knowledge and techniques, and introduce useful new approaches for your clinical practice as well as for your teaching of our wonderful vocation. Enjoy this first hybrid print and digital Clinical Sports Medicine.

xxxii
About the authors

Peter Brukner

OAM, MBBS, DRCOG, FACSP, FASMF, FACSM, FFSEM

Sports physician

Head, Sports Medicine and Sports Science, Liverpool Football Club, UK
Founding Partner, Olympic Park Sports Medicine Centre, Melbourne, Australia
Associate Professor, Centre for Health, Exercise and Sports Medicine, The University of Melbourne
Honorary Fellow, Faculty of Law, The University of Melbourne
Adjunct Professor, School of Human Movement Studies, The University of Queensland
Adjunct Professor, Liverpool John Moores University, UK
Visiting Associate Professor, Stanford University, USA 1997
Executive Member, Australian College of Sports Physicians 1985–2000
Board of Trustees, American College of Sports Medicine 2000–02
State and Federal Council Member, Sports Medicine Australia 1984–90

Team physician

Socceroos, 2007–10, Asian Cup Finals 2007, World Cup Finals 2010
Australian Olympic Team, Atlanta 1996, Sydney 2000
Australian team, World Student Games, Edmonton 1983, Kobe 1985, Zagreb 1987
Australian team, World Cup Athletics, Havana 1992
Australian Mens Hockey team 1995–96
Australian team, World Swimming Championships, Madrid 1986
Melbourne Football Club (AFL) 1987–90
Collingwood Football Club (AFL) 1996

Editorial boards

Clinical Journal of Sport Medicine
The Physician and Sportsmedicine
Current Sports Medicine Reports
British Journal of Sports Medicine

Editor

Sport Health 1990–95

Co-author

Food for Sport 1987
Stress Fractures 1999
Drugs in Sport—What the GP Needs to Know 1996, 2000
The Encyclopedia of Exercise, Sport and Health 2004
Essential Sports Medicine 2005
Clinical Sports Anatomy 2010

Awards

Medal of the Order of Australia 2006
Inaugural Honour Award, Australian College of Sports Physicians 1996
Citation Award, American College of Sports Medicine 2000
Karim Khan

MD, PhD, MBA, FACSP, FSMA, DipSportMed, FACSM, FFSEM(Hon)

Sports physician
Professor, University of British Columbia, Vancouver, Canada (Department of Family Practice and School of Kinesiology); Associate Member, Departments of Physical Therapy, and Orthopaedics
Executive Associate Director, Centre for Hip Health and Mobility, Vancouver, Canada
Principal Fellow with title Professor, School of Physiotherapy, The University of Melbourne, Melbourne, Australia
Visiting Professor, School of Human Movement Studies, The University of Queensland, Brisbane, Australia
Clinical Professor, Centre for Musculoskeletal Studies, School of Surgery, University of Western Australia, Perth, Australia
Exercise is Medicine Committee, American College of Sports Medicine
Medical Education Committee, American College of Sports Medicine 2002–04

Research Evaluation Committee, American College of Sports Medicine 2005–07
Scientific Subcommittee, Aspetar Hospital, Doha, Qatar 2011–

Team physician
Olympic Games Sydney 2000, Basketball Competition Venue
Australian Women’s Basketball (The Opals) 1991–96
The Australian Ballet Company 1991–96
The Australian Ballet School 1991–96
Australian team, World Student Games 1993
Australian team, Junior World Cup Hockey 1993

Editorial boards
BMJ (International Advisory Board) 2008–
Scandinavian Journal of Medicine and Science in Sport 2007–
Journal of Science and Medicine in Sport 1997–2001
Year Book of Sports Medicine 2008–10
Clinical Journal of Sport Medicine 2003–06

Editor-in-chief
British Journal of Sports Medicine 2008–
Sport Health 1995–97

Co-author
Physical Activity and Bone Health 2001
The Encyclopedia of Exercise, Sport and Health 2004

Selected awards
Prime Minister’s Medal for Service to Australian Sport 2000
Sports Medicine Australia Fellows’ Citation for Service 2005
Honorary Fellowship, Faculty of Sports and Exercise Medicine (Ireland) 2011
Editors

Roald Bahr PhD
Professor of Sports Medicine, Norwegian School of Sport Sciences, Oslo Sports Trauma Research Center; Chair, Department of Sports Medicine, Olympic Training Center, Norway

Steven Blair, PED
Professor, Department of Exercise Science and Epidemiology and Biostatistics, Public Health Research Center, University of South Carolina, USA

Jill Cook PhD, GradCertHigherEd, GradDipManip, BAppSci (Physio)
Professor and Principal Research Fellow, Department of Physiotherapy, School of Primary Health Care, Monash University, Melbourne, Australia

Kay Crossley BAppSci(Physio), PhD
Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia; Associate Professor, School of Health and Rehabilitation Sciences, The University of Queensland; Principal Research Fellow, Dept

Mechanical Engineering and Physiotherapy, The University of Melbourne; Australian Olympic Team Physiotherapist, Sydney 2000

Jenny McConnell AM, FACP, BAppSci(Physio), GradDipManTher, MBiomedEng
Director, McConnell and Clements Physiotherapy, Sydney, Australia; Visiting Senior Fellow, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Australia

Paul McCrory MBBS, PhD, FRACP, FACSP, FFSEM, FACSM, FASMF, GradDipEpidStats
Associate Professor, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Australia; Brain Research Institute, Florey Neurosciences Institutes, The University of Melbourne; Australian Centre for Research into Sports Injury and its Prevention (ACRISP)—an IOC Research Centre Collaboration

Timothy Noakes OMS, MBChB, MD, DSc, FACSM(Hon), FFSEM (UK)
Sports Physician and Exercise Physiologist, Discovery Health Professor of Exercise and Sports Science, University of Cape Town and Sports Science Institute of South Africa, Cape Town, South Africa
Co-authors

Jason Agosta BA(Sc) (Podiatry)
Podiatrist, private practice, East Melbourne;
Podiatrist, Essendon Football Club and Melbourne Storm (Rugby League)

Håkan Alfredson MD, PhD
Orthopaedic Surgeon, Professor Sports Medicine Unit, University of Umeå, Sweden

Hashel Al Tunaiji MBBS, MSc
Sport Medicine Physician; Postdoctoral Fellow, Centre for Hip Health and Mobility, University of British Columbia (UBC), Vancouver, Canada; Family Medicine, UBC, Abu Dhabi, United Arab Emirates

Julia Alleyne BHSc(PT), MD, CCFP, FACSM, DipSportMed(CASM)
Associate Clinical Professor; Chair Sport Medicine Fellowship, Department of Family and Community Medicine, University of Toronto; Medical Director, Sport CARE, Women's College Hospital, Toronto; Chair, Education Commission FIMS; Canadian Olympic Committee, Medical Staff, Salt Lake City 2002, Turin 2006, Beijing 2008, Vancouver 2010, Chief Medical Officer London 2012

Jock Anderson MBBS, FRANZCR, FRACSP(Hon)
Associate Professor, University of New South Wales; Member International Skeletal Society and Australasian Musculoskeletal Imaging Group; Director of Medical Imaging at Sydney 2000 Olympic and Paralympic Games; Director of Medical Imaging for Rugby World Cup, Australia 2003

Elizabeth Arendt MD, FACSM
Orthopaedic Surgeon; Professor, Vice Chair Department of Orthopaedic Surgery, University of Minnesota, USA; Past Team Physician USA Soccer and USA Women's Hockey; Task Force on Women's Issues, NCAA Medical Safeguards Committee; Current chair of AAOS Women's Health Issues Advisory Board

Maureen C. Ashe BS, MSc, PhD
Assistant Professor, University of British Columbia; Family Practice, Vancouver, Canada

Carl Askling PhD, PT
Vice-President, Swedish Sports Trauma Research Group; Swedish School of Sport and Health Sciences and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Christian Barton PT, PhD
Research Supervisor, Queen Mary University of London, Centre for Sports and Exercise Medicine

Simon Bell FRCS, FRACS, FAOrthA, PhD
Associate Professor, Monash University and Melbourne Shoulder and Elbow Centre, Orthopaedic Surgery, Melbourne, Australia; Head of the Upper Limb Unit, Orthopaedic Department, Division of Surgery, Monash Medical Centre, Monash University; President of the Victorian Shoulder and Elbow Society; Senior Research Fellow, Centre for Health, Exercise and Sports Medicine, The University of Melbourne

Kim Bennell BA(Sc)(Physio), PhD
Professor, Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, The University of Melbourne

Chris Bradshaw MBBS, FACSP
Head Physician, Olympic Park Sports Medicine Centre, Geelong Campus; Team Physician, Geelong Football Club (AFL); Former Team Physician Fulham Football Club (EPL), Track and Field Australia, Olympic Games, Sydney 2000; ACSP Board of Censors, Board of Examiners

Shane Brun PhD
Associate Professor, Musculoskeletal and Sports Medicine, Clinical Skills Unit, School of Medicine and Dentistry, James Cook University, Townsville, Australia

Dennis Caine PhD
Professor, University of North Dakota, Department of Physical Education, Exercise Science and Wellness, Grand Forks, USA; Associate Editor, British Journal of Sports Medicine
Nick Carter MB ChB, MRCP
Consultant in Rheumatology and Rehabilitation, Medical Defence Services, Medical Rehabilitation Centre, Headley Court, UK

Navin Chandra MRCP, MBBS, BSc
Cardiology Specialty Registrar, Cardiology, London Deanery, North-West Thames, London, UK

Jacqueline Close MBBS, MD, FRCP, FRACP
Consultant Geriatrician, Prince of Wales Hospital, Department of Geriatric Medicine, Sydney, Australia; Principal Research Fellow, Neuroscience Research Australia; Conjoint Associate Professor, The University of New South Wales

Phil Coles BAppSc(Physio), MSc(Sports Physio)
Head of Physical Therapies Department, Liverpool Football Club, UK; APA Titled Sports Physiotherapist; CSP

Natalie Collins BPhysio(Hons I), PhD
NHMRC Postdoctoral Research Fellow, Department of Mechanical Engineering, The University of Melbourne; Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia

Wendy L. Cook MD, MHSc, FRPC
Geriatrician, Clinical Instructor, Division of Geriatric Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada

Randall Cooper BPhysio, MPhysio, FACP
Specialist Sports Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia; Physiotherapist, Australian Winter Olympics team, Torino, Italy 2006

Sallie Cowan BAppSci(Physio), GradDipManipTher, PhD
Senior Research Fellow, Musculoskeletal Physiotherapist, School of Physiotherapy, The University of Melbourne, Australia

Gavin Davis MBBS, FRACS (Neurosurgery)
Associate Professor Neurosurgery, Cabrini Hospital, Melbourne, Australia; Chairman, Department of Surgical Specialties, Cabrini Hospital; Consultant Neurosurgeon, Austin and Box Hill Hospitals; University of Notre Dame, Australia

Jennifer Davis PhD
Canadian Institutes of Health Research Postdoctoral Fellow; Health Economist/Epidemiologist, University of British Columbia, Centre for Clinical Epidemiology and Evaluation, School of Population and Public Health, Vancouver, Canada

Tony J Delaney RFD, MBBS, FACSP
Sports Physician, Narrabeen Sports and Exercise Medicine Clinic, Academy of Sport, Sydney; Visiting Senior Specialist, Sports Medicine Clinic, 1st Health Support Battalion, Holsworthy Military Area and Fleet Base East Health Centre, New South Wales, Australia; Chair, Australian Defence Force Sports, Rehabilitation and Musculoskeletal Consultative Group; Past Senior Medical Officer, 1st Commando Regiment

Jon Drezner MD
Associate Professor, Department of Family Medicine, University of Washington, Seattle, USA; Vice-President, American Medical Society for Sports Medicine; Team Physician, Seattle Seahawks and UW Huskies

Jiri Dvorak MD
FIFA Chief Medical Officer; Senior Consultant, Spine Unit, Schulthess Clinic Zurich; Associate Professor Neurology, University of Zurich, Switzerland

Lars Engebretsen MD, PhD
Professor, Department of Orthopaedic Surgery, Oslo University Hospital and Faculty of Medicine, University of Oslo and Oslo Sports Trauma Research Center, Norway; Head Physician Norwegian Olympic Center (Olympiatoppen); Head Scientific Activities, International Olympic Committee (IOC); Past President ESSKA

Peter J. Fazey PT, MT, FACP
Specialist Musculoskeletal Physiotherapist, The Centre for Musculoskeletal Studies, School of Surgery, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia; President of the Australian College of Physiotherapists
Co-authors

Bruce B. Forster MSc, MD, FRCPC
Professor and Head, Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Regional Medical Director, Medical Imaging, Vancouver Coastal Health

Richard Frobell PhD
Assistant Professor, Department of Orthopedics, Medical Faculty, Lund University, Sweden

Andrew Garnham MBBS, FACSP
Conjoint Clinical Senior Lecturer, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia; Past President of the Australasian College of Sports Physicians

Robert Granter BScSci, AdDipRemMass(Myotherapy)
Soft Tissue Therapist, Victorian Institute of Sport, Melbourne, Australia; Head of Massage Therapy Services, Australian Olympic Team 1996 and 2000; Head of Massage Therapy Services, Melbourne 2006 Commonwealth Games

Peter T. Gropper MD, FRCSC
Clinical Professor, Department of Orthopedic Surgery, University of British Columbia, Vancouver, Canada

Callista Haggis, MAP
Research Consultant, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, Canada

Peter Harcourt MBBS, DipRACOG, FACSP, FSMA
Sports Physician; Medical Director, Victorian Institute of Sport; Australian Olympic Games Medical Team 1992–2004; Head, Commonwealth Games Medical Team, 2006

Matthew Hislop MBBS, MSc, FACSP
Sport and Exercise Medicine Physician, Brisbane Sports and Exercise Medicine Specialists, Brisbane, Australia; Joint Team Physician, Brisbane Broncos (NRL); Team Physician, Reds Rugby Academy

Sandy Hoffmann, MD, FACSM, CAQ
Associate Clinical Professor Sports Medicine, Idaho State University; Team Physician, Idaho State University, Pocatello, Idaho, USA

Per Holmich MD
Orthopaedic Surgeon, Associate Research Professor, Copenhagen University Hospital, Arthroscopic Center Amager; Associate Professor of Anatomy, University of Copenhagen, Denmark

Karen Holzer MBBS, FACSP, PhD
Sports Physician, Melbourne, Australia; NHMRC Senior Research Fellow, Department of Respiratory Medicine, Royal Melbourne Hospital; Australian Team Doctor, World Track and Field Championships, Helsinki 2005, and Olympic Games, Beijing 2008

Mark R. Hutchinson MD, FACSM
Professor of Orthopaedics and Sports Medicine and Head Team Physician, University of Illinois at Chicago, Chicago, Illinois; Head Team Physician, WNBA Chicago Sky; Volunteer Event Physician, LaSalle Bank Chicago Marathon, Chicago, Illinois, USA

Zafar Iqbal MBBS, BSc, DCH, DRCOG, MRCGP, MSc(SEM), DipPCR
First Team Doctor, Liverpool FC; Sports and Exercise Medicine Physician, Liverpool, UK

Gwendolen Jull MPhysio, PhD, FACP
Professor, Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia

Pekka Kannus MD, PhD
Chief Physician, Injury and Osteoporosis Research Center, UKK Institute, Tampere, Finland; Associate Professor (Docent) of Sports Medicine, University of Jyväskylä, Finland; Visiting Professor, Department of Orthopedics and Rehabilitation, University of Vermont College of Medicine, Burlington, Vermont, USA
Jon Karlsson MD, PhD
Professor of Orthopaedics and Sports Traumatology,
Senior Consultant, Professor, Sahlgrenska
University Hospital, Department of Orthopaedics,
Gothenburg, Sweden

Joanne Kemp BAppSci(Physio), MSportsPhysio
APA Sports Physiotherapist; Principal Physiotherapist and Director, Bodysystem Physio, Hobart, Tasmania, Australia; PhD Candidate, The University of Melbourne, Australia

W. Ben Kibler MD, FACSM
Medical Director, Lexington Clinic Sports Medicine Center, The Shoulder Center of Kentucky, Section of Orthopedic Surgery, Lexington Clinic, Lexington, KY, USA

Mary Kinch HDST(PhysEd), BAppSc(Physio)
Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia; APA Titled Sports Physiotherapist; Clinical Pilates Physiotherapist

Zoltan Kiss MBBS, FRACP, FRANZCR, DDU
Senior Fellow (Hon), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Australia; Consultant Radiologist, Melbourne, Australia

Michael S. Koehle MD, MSc, CCFP, DipSportMed(CASM)
Sport Physician, Clinical Assistant Professor, Allan McGavin Sports Medicine Centre, Department of Family Practice, University of British Columbia, Vancouver, Canada

Jonas Kwiatkowski, BSc
Research Assistant, Vancouver General Hospital, Centre for Hip Health and Mobility, Vancouver, Canada

Andrew Lambart BAppSc(Physio)
Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia; Team Physiotherapist, Hawthorn Football Club (AFL); Australian Olympic Team Physiotherapist, Athens 2004

Theresa Lee, PhD, MBBS (Hons 1), FRANZCR
Consultant Radiologist, PRP Diagnostic Imaging, Sydney, Australia

Mark Link MD, FACC, FHRS
Professor of Medicine, Tufts University School of Medicine, Tufts Medical Center, Cardiac Arrhythmia Center, Boston, MA, USA

Teresa Liu-Ambrose PhD, PT
Assistant Professor, University of British Columbia, School of Rehabilitation Sciences, Division of Physical Therapy; Head, Exercise and Cognitive Function Unit, Centre for Hip Health and Mobility, Vancouver, Canada

Zuzana Machotka MPhysio(Musc and Sports), BPhysio
Clinical Researcher/Physiotherapist, International Centre for Allied Health Evidence, University of South Australia, Adelaide, Australia; Australian Paralympic Winter Team

Jim Macintyre MD, MPE, FACSM, DipSportsMed
Primary Care Sports Medicine, Center of Orthopedic and Rehabilitation Excellence, Jordan Valley Medical Center, West Jordan, Utah

Erin M Macri BSc(Kin), MPT
Registered Physical Therapist; Masters of Science Candidate in Experimental Medicine, University of British Columbia, Centre for Hip Health and Mobility, Vancouver, Canada

Nicola Maffulli MD, MS, PhD, FRCS(Orth)
Professor of Sports and Exercise Medicine, Consultant Trauma and Orthopaedic Surgeon, Queen Mary University of London, Barts and The London School of Medicine; Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK

Michael Makdissi BSc(Hons), MBBS, PhD, FACSP
Sports Medicine Physician, Olympic Park Sports Medicine Centre, Melbourne, Australia; NHMRC Training Fellowship, Melbourne Brain Centre, Florey Neurosciences Institute, The University of Melbourne, Australia
Co-authors

Chris Milne BHB, MBChB, DipObst, DipSportsMed, FRNZCGP, FACS
Sports Physician, Anglesea Sports Medicine, Hamilton; Olympic Team Physician, New Zealand

Hayden Morris MBBS, DipAnat, FRACS
Orthopaedic Surgeon, Olympic Park Sports Medicine Centre, Melbourne, Australia

Lorimer Moseley PhD
Professor of Clinical Neurosciences and Chair of Physiotherapy, University of South Australia, Adelaide, Australia; Visiting Senior Research Fellow, Neuroscience Research Australia

George Murrell MBBS, DPhil
Professor and Director, Department of Orthopaedic Surgery, St George Hospital Campus, The University of New South Wales, Sydney, Australia

Babette Pluim MD, PhD, MPH, FFSEM (UK, Ire)
Sports Medicine Physician, Royal Netherlands Lawn Tennis Association, Amersfoort, the Netherlands; Deputy Editor, British Journal of Sports Medicine

Joel M. Press MD
Professor, Physical Medicine and Rehabilitation, Feinberg/Northwestern School of Medicine; Medical Director, Spine and Sports Rehabilitation Centers, Rehabilitation Institute of Chicago, USA; Reva and David Logan Distinguished Chair of Musculoskeletal Rehabilitation

Michael Pritchard BMedSci, MBBS (Hons), FRACS (Orth)
Orthopaedic Surgeon, St Johns Hospital, Hobart, Australia

Douglas Race BPE, MA candidate
Research Technician, Bone Health Research Group, Department of Orthopedic Engineering, University of British Columbia, Vancouver, Canada

Stephan Rudzki MBBS, GradDipSportSc, MPH, PhD, FACSP
Brigadier, Australian Defence Force, Joint Health Command; Director General Army Health Services, Canberra, Australia

Anthony Schache BPhysio(Hons), PhD
Physiotherapist, Olympic Park Sports Medicine Centre and Richmond Football Club (AFL), Melbourne, Australia; Research Fellow, Hugh Williamson Gait Laboratory, Royal Children’s Hospital, Melbourne and Centre for Health Exercise and Sports Medicine, The University of Melbourne, Australia

Alex Scott BSc(PT), PhD, RPT
Assistant Professor, Department of Physical Therapy, University of British Columbia, Vancouver, Canada

Sanjay Sharma BSc, MD, FRCP, FESC
Professor, St George’s University of London, Department of Cardiovascular Sciences, London, UK; Medical Director, London Marathon; Consultant Cardiologist for Cardiac Risk in the Young; Cardiology Advisor for the English Institute of Sport, Lawn Tennis Association and English Rugby League

Catherine Sherrington MPH, BAAppSc, PhD
NHMRC Senior Research Fellow, Musculoskeletal Division, The George Institute for Global Health, Sydney, Australia

Karin Grävare Silbernagel PT, ATC, PhD
Postdoctoral Researcher, Spencer Laboratory, Department of Mechanical Engineering, University of Delaware, USA

Kevin P. Singer PhD, PT
Physiotherapist; Professor and Head of the Centre forMusculoskeletal Studies, School of Surgery, The University of Western Australia, Perth, Australia

Meena M. Sran BSc(PT), MPhysioSt(Manips), PhD
Researcher and Physiotherapist, BC Women’s Hospital and Health Centre, Movement Essentials Physiotherapy; Vice-President, International Organization of Physical Therapists in Women’s Health, Vancouver, Canada

Cameron Stuart BASc
Research Assistant, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, Canada
Hasan Tahir BSc, MBBS, Dip SEM, FRCP
Consultant Physician in Acute Medicine and Rheumatology, Whipps Cross University Hospital NHS Trust; Department of Rheumatology, Clinical Lead for Acute Medicine, Biological Therapies and Research; Professor of Medicine, St Matthew’s University Hospital, London, UK

Larissa Trease BMedSci(Hons), MBBS(Hons), FACSP
Sport and Exercise Medicine Physician, Olympic Park Sports Medicine Centre, Melbourne, Australia; Chief Medical Officer, Australian Paralympic Team, Beijing 2008.

Michael Turner MB BS, MD, FFSEM (UK and Ireland)
Chief Medical Adviser, Lawn Tennis Association, UK

Willem van Mechelen MD, PhD, FACSM, FECSS
Department Head of Public and Occupational Health, Co-director EMGO Institute, VU University Medical Center, Amsterdam, The Netherlands

Evert Verhagen PhD
Assistant Professor, VU University Medical Center, EMGO Institute for Health and Care Research, Department of Public and Occupational Health, Amsterdam, The Netherlands

Bill Vicenzino PhD, MSc, BPhysio, GradDipSportPhysio
Professor of Sports Physiotherapy and Head of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia

Nick Webborn MBBS
Sports Physician and Medical Adviser to the British Paralympic Association; The Sussex Centre for Sport and Exercise Medicine, University of Brighton, Eastbourne, UK

Charlotte Yong-Hing MD
Department of Radiology, Vancouver General Hospital, University of British Columbia, Canada

Vanessa Young BSc, MBChB (Otago)
Wellington Hospital, Wellington, New Zealand; International Exchange Scholar 2010, Centre for Hip Health and Mobility, Vancouver, Canada
Other contributors

Alex Bennett MRCP, PhD
Consultant Rheumatologist, Defence Medical Rehabilitation Centre, Headley Court, UK

Mario Bizzini PT, PhD
Research Associate, FIFA—Medical Assessment and Research Centre (F-MARC) and Schulthess Clinic, Zurich, Switzerland

Michael Bresler MD
Section Chief, Department of Musculoskeletal MRI, Vice Head for Clinical Operations, Assistant Professor of Radiology, University of Illinois College of Medicine, University of Illinois Medical Center, Chicago, IL, USA

Malcolm Collins PhD
Chief Specialist Scientist, South African Medical Research Council; Associate Professor, UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa

Emma Colson BAppSc(Physio), GradDipManipPhysio
APA Sports and Musculoskeletal Physiotherapist, Topbike Physio, Melbourne, Australia

Robert Jan de Vos MD, PhD
Sports Physician (Registrar), The Hague Medical Centre, Department of Sports Medicine, Leidschendam, The Netherlands

Scott Fraser BSc, PT, DipSport Physiotherapy
Allan McGavin Sports Medicine and Physiotherapy Centre, War Memorial Gym, University Boulevard, Vancouver, Canada

Angie Fearon PhD Candidate, BAppSc(Physio), MPhysio
Australian National University, College of Medicine, Biology and the Environment; The Canberra Hospital, Trauma and Orthopaedic Research Unit, Canberra, Australia

Nick Gardiner BSc(Hons) Sports Therapy, PGCHE, MSST
BSc Sports Therapy Course Leader at London Metropolitan University (LMU); Founder of Fit For Sport, Sports Therapy and Injury Clinic, London, UK

Pierre Guy MD, MBA
Associate Professor and Clinician-Scientist/Orthopedic Surgeon, Department of Orthopaedics, Center for Hip Health and Mobility University of British Columbia, Vancouver, Canada

Astrid Junge PhD
Head of Research, FIFA—Medical Assessment and Research Centre (F-MARC) and Schulthess Clinic, Zurich, Switzerland

Carol Kennedy BScPT, MCSc(manip), FCAMPT
Treloar Physiotherapy Clinic, Vancouver, Canada

Syx Langemann BFA
Blackframe Studios Photography, Vancouver, Canada

Moira O’Brien FRCPI, FFSEM, FFSEM(UK), FTCO, FECSS, MA
Professor Emeritus of Anatomy, Trinity College Dublin, Ireland; Osteoporosis and Sports Medicine Consultant at Euromedic Dundrum, Rockfield Medical Campus, Ballaly, Dundrum, Dublin; President, Irish Osteoporosis Society

John Orchard BA, MD, PhD, FACSP, FACSM, FFSEM (UK)
Sports Physician, Adjunct Associate Professor, University of Sydney, School of Public Health, Sydney, Australia

Nadia Picco
Senior Graphic Designer, Digital Printing and Graphic Services, The Media Group, University of British Columbia, Vancouver, Canada

Cyrus Press MD
Chief Resident, University of Illinois Medical Center, Department of Orthopaedic Surgery, Chicago, IL, USA
Craig Purdam MSports Physio
Head of Physical Therapies, Australian Institute of Sport, Canberra, Australia; Olympic Team Physiotherapist 1984–2000; Adjunct Professor, University of Canberra; APA Specialist Sports Physiotherapist

Ann Quinn PhD, MSc, BAappSc, DipEd, DipNutr.
Peak Performance Specialist; Director, Quintessential Edge, London, UK

Aaron Sciaccia MS, ATC, NASM-PES
Program Coordinator, Lexington Clinic Sports Medicine Center; Coordinator of The Shoulder Center of Kentucky, USA

Ian Shrier MD, PhD, DipSportMed, FACSM
Associate Professor, Department of Family Medicine, McGill University; Centre for Clinical Epidemiology and Community Studies, SMBD-Jewish General Hospital, Montreal, Quebec, Canada; Past-President, Canadian Academy of Sport and Exercise Medicine

Andy Stephens BAappSci(Physio)
Physiotherapist, Olympic Park Sports Medicine Centre, Melbourne, Australia

Kent Sweeting B(HlthSc(Pod))(Hons)
Podiatrist and Director, Performance Podiatry and Physiotherapy; Lecturer, Queensland University of Technology, School of Public Health, Brisbane, Australia

Paul Thompson MD, FACC, FACSM
Medical Director of Cardiology and The Athletes’ Heart Program, Preventive Cardiology, Hartford Hospital, Connecticut, USA

Susan White MBBS(Hons), FACSP, FASMF
Sports Physician, Olympic Park Sports Medicine Centre, Melbourne, Australia; Chief Medical Officer, Swimming Australia; Member, Medical Commission, Australian Olympic Committee; Medical Director Australian Team, Youth Olympic Games 2010

The illustrator

Vicky Earle B Sc (AAM), MET, Cert TBDL

Medical Illustrator, The Media Group, University of British Columbia, Vancouver, Canada

Vicky is a highly experienced medical illustrator who has been involved in the design and production of a wide variety of surgical procedural and medical illustrations that have been used in journals, books, conferences, lectures, and legal presentations. Her keen interest in Clinical Sports Medicine stems not only from a great appreciation of the human body and its capabilities, but also from a decade of racing experience as a championship rower and paddler—and knowing first-hand the many injuries that accompany these activities.
Acknowledgments

No need to apologize, let me look at what needs to be done. Immediate email response from an extremely busy co-author when asked to contribute to this fourth edition.

This completely updated print and online resource is unashamedly founded on the previous three editions. To date, this text has satisfied more than 80,000 clinicians and provided core material for students who focus on the care of active people in Australia, New Zealand, Africa, Asia, Europe, and the Americas. Japanese readers have their own translation. The overwhelming support for this clinically based textbook means we are particularly indebted to our partners in all previous editions.

Specific thanks for the fourth edition go to chapter co-authors listed with their affiliations on pages xxxvi–xli. Expert co-authors provide the crucial innovation and timeliness that Clinical Sports Medicine users demand. We are both humbled and privileged to be sharing cover authorship with seven amazing colleagues and friends—Drs Cook, Crossley, McConnell, Bahr, Blair, McCrory, and Noakes (ladies first, of course). We would love to have listed more names on the cover but the designer overruled us on that one! A further 109 co-authors made this book happen. It takes a community to create Clinical Sports Medicine—and we are grateful for every single member of that hardworking international community.

Because this edition fully embraces digital media, we especially acknowledge those co-authors who contributed to this innovation. Particular thanks go to Dr Mark Hutchinson, and the team in Chicago, for providing critical and substantial content for the online masterclasses.

Vicky Earle has gained international recognition for her artwork; thank you for continuing to translate clinical innovation in ways that jump to life for users. The University of British Columbia (Department of Family Practice—Faculty of Medicine as well as Faculty of Education) provided essential support (KK), as did the Olympic Park Sports Medicine Centre, The University of Melbourne and Liverpool Football Club (PB). Clinical Sports Medicine benefits from the continuity, consistency, and integration honed over two decades, and from the expertise and freshness of cutting-edge international chapter authors. We seek out the world’s best and we appreciate their responding to our calls! It has been a pleasure to work with every member of the Clinical Sports Medicine 4th edition team.

We give special thanks to our publishing team, who efficiently developed Brukner and Khan dreaming into the book you hold in your hands: publishing director Nicole Meehan, who has been a visionary leader; publishers Elizabeth Walton and Fiona Richardson; production editors Yani Silvana and Jess Ni Chiuinn; and freelance editor Jill Pope. McGraw-Hill’s support of all our crazy ideas has allowed us to generate a few good ones; thanks for your judgment and filtering! Within the authors’ multi-faceted production team in three countries, Zuzana Machotka and Callista Haggis earn special thanks—for their skill, attention to detail, and good humor even under pressure. Finally, axiomatically, the most profound thanks we reserve for our long-suffering friends and families: Diana and Heather, we both know that words are not enough!
Guided tour of your book

The principal text in its field, this fourth edition of *Clinical Sports Medicine* continues to provide readers with quality, up-to-date content. The engaging material has been contributed by leading experts from around the world. Look out for these key features, which are designed to enhance your learning.

Integrated learning resources

New to this edition is the *Clinical Sports Medicine* website containing masterclasses with video and audio content.

The authors have worked with specialists to film key clinical procedures, including video clips demonstrating physical examinations, key rehabilitation exercise programs, and joint injections. Much of this video content has been commissioned for this edition.

Wherever this icon appears in the book, go to the website to view a video or listen to a podcast. Access is via the pincode card located in the front of the book.

For easy reference, a summary of the online content (where relevant) is given at the end of each chapter.

Clinical Sports Medicine Masterclasses

- www.clinicalsportsmedicine.com
 - Listen to the interview with chapter authors.
 - See demonstration of biomechanical assessment.
 - See a demonstration of the original low-Dye technique augmented with reverse sizers and calcaneal slings anchored to the lower leg.

Recommended Websites

Barton CJ, Bonanno D, Menz HB. Development and evaluation of a tool for the assessment of footwear characteristics: www.ncbi.nlm.nih.gov/pmc/articles/PMC2678108/?tool=pubmed
First-class content

As with previous editions the emphasis is on treatment and rehabilitation. The chapters in Part B, which address regional problems, are heavily illustrated with clinical photos, relevant imaging, and anatomical illustrations.
The list of world-renowned contributors has grown even longer in this edition and brings a truly global perspective to the book.
Part A

Fundamental principles
The three previous editions of Clinical Sports Medicine focused on how to practice sports and exercise medicine. This chapter takes us back one step to “why?” Why practice sports and exercise medicine?

The burden of physical inactivity and sedentary behavior

Where to start? Surf the web, read any magazine, look around you as you walk down the street. The problem of physical inactivity is not subtle, and this chapter aims to provide a launching pad for the sports clinician—a key agent in the war against physical inactivity.

The one trillion dollar argument (US alone!)

The year 2000 seems like antiquity, but even then physical inactivity cost the US $1 trillion annually. This information gained enormous exposure and the fundamental data and methods that underpin those calculations still apply. Methods to analyze economic burden of disease have been refined, updated, and expanded to include many additional costs. Thus, the costs of physical inactivity can only have increased in the past decade (Table 1.1). Note that a week of physical inactivity is estimated to incur the same health costs as a week of smoking.

Physical fitness—more health benefits than smoking cessation or weight loss

Having identified that physical inactivity is a problem, we can look for a solution. How can the problem of physical inactivity be addressed? Physical activity! It is known that physical fitness provides more health benefits than smoking cessation or losing weight. Numerous systematic reviews expound the many health benefits of physical activity, but systemic reviews are complex, predictable, and unemotional—a perfect combination for boring the general public and policy makers alike.

However, brief slogan-like (“sticky”) messages (see also Chapter 16 for more on “sticky messages”) are useful in helping convince people that physical activity is a remarkable medical therapy. Some include:

- For health, daily walking (30 minutes) is eight times as powerful as losing weight.
- Physical activity provides twice the health benefits as giving up smoking.
- Low fitness kills more Americans than does ‘smokadiabetes’—smoking, diabetes, and obesity combined.

These sticky messages reflect data from Steven Blair’s epidemiological study at the Cooper Institute in Texas (Fig. 1.1). Note that “attributable fraction” refers to the proportion of deaths in the population that are due to the specific risk factor. It differs from “individual level” risk profiling.

The molecular mechanisms that explain the health benefits of physical activity

Experimental and mechanistic data shows how physical activity promotes health at the cellular and subcellular level. Some examples of exercise-induced health benefits at the molecular level that many patients find interesting and that can help motivate some are shown in the box opposite.
Table 1.1 Conditions precipitated by physical inactivity and resulting health care costs in the US

<table>
<thead>
<tr>
<th>Unhealthy condition</th>
<th>Annual cost of condition in US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertriglyceridemia</td>
<td>286.5 billion</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td></td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td></td>
</tr>
<tr>
<td>Insulin resistance</td>
<td></td>
</tr>
<tr>
<td>Increased thrombosis</td>
<td></td>
</tr>
<tr>
<td>Increased resting blood pressure</td>
<td></td>
</tr>
<tr>
<td>Increased risk of myocardial ischemia</td>
<td></td>
</tr>
<tr>
<td>Increased incidence of lethal ventricular arrhythmias</td>
<td></td>
</tr>
<tr>
<td>Decreased cardiac stroke volume and maximal cardiac output</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>238 billion</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>98 billion</td>
</tr>
<tr>
<td>Breast and colon cancer</td>
<td>107 billion for all cancers</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>6 billion</td>
</tr>
<tr>
<td>Sarcopenia</td>
<td>300 billion for all disabilities</td>
</tr>
<tr>
<td>Back pain</td>
<td>28 billion</td>
</tr>
<tr>
<td>Gallstone disease</td>
<td>5 billion</td>
</tr>
<tr>
<td>Decreased psychological wellbeing</td>
<td>(cost not known)</td>
</tr>
<tr>
<td>Total</td>
<td>1000 billion = 1 trillion</td>
</tr>
</tbody>
</table>

ADAPTED FROM BOOTH ET AL.¹
This was published in 2000 so is likely to be an underestimate today.

Figure 1.1 Attributable fractions (%) for all-cause deaths in 40,842 (3333 deaths) men and 12,943 (491 deaths) women in the Aerobics Center Longitudinal Study. The attributable fractions are adjusted for age and each other item in the figure BLAIR¹

Examples of exercise-induced health benefits at the molecular level

Preventing type 2 diabetes
Running on a treadmill stimulates key enzymes for energy sensing/signaling, including an important one called AMP kinase (AMPK). This protein helps remove fatty acids during muscular contraction and limits fatty acid biosynthesis. Exercise also enhances muscle membrane glucose transport capacity by recruiting a critical transport protein, GLUT-4, to the sarcolemma and T tubules where the protein can be active. Increasing the expression of GLUT-4 in skeletal muscle can be considered a crucial way of “mopping” glucose out of the bloodstream and into muscle and, hence, reducing the demand for insulin.⁸

Brain function
1. Both resistance training and endurance (aerobic) training can improve brain function. Convincingly,
Putting it all together—the economic imperative

“Exercise—the best buy in public health” concluded Jeremy Morris. A recent success story? Not at all! That was the title of a 1994 paper! The evidence has piled up since then: personal, regional, and national economic benefits accrue to those who are physically active.6, 10 But how can we encourage adoption of this most powerful behavior—physical activity as medicine!

Practical challenges

Physical activity was not a societal burden when survival depended on it. Because we have engineered physical activity out of contemporary society, sedentary behavior is an easier choice. Similarly, poverty in various forms can make it very difficult for an individual to be active. Although clinicians are an important part of the team that promotes physical activity, society will need to make a concerted effort at various levels. This multilevel approach has been codified as the socioecological model of behavior change (Fig. 1.3).11

Consider the difference in likelihood of physical activity for Roald in Norway and a nameless inhabitant of a mythical urban wasteland. Roald’s government provides tax benefits for healthy behavior and he lives close to a large forest with attractive walking paths. He can ride to work safely on a dedicated bike lane. His community promotes free public cross-country skiing by grooming and lighting the paths. His friends consider skating to be a great social activity. All levels of school-age children do at least 30 minutes of exercise each day as part of the school curriculum. All five elements of the socioecological model are working toward Roald and his family having an active lifestyle.

The darkest hour is just before the dawn

This chapter is written in a spirit of optimism. The human race has faced major challenges previously in public health and this problem—physical inactivity—is remediable. The remainder of this book is dedicated to keeping people active by preventing and treating musculoskeletal conditions in those who want to be active and by prescribing therapeutic exercise for those who have medical conditions.12

Figure 1.3 Socioecological model of physical activity

<table>
<thead>
<tr>
<th>Individual factors</th>
<th>Social environment factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual behavior</td>
<td></td>
</tr>
<tr>
<td>Physical environment</td>
<td>Public and regulatory factors</td>
</tr>
</tbody>
</table>
RECOMMENDED WEBSITES

British Journal of Sports Medicine: www.bjsm.bmj.com
Exercise is Medicine: www.exerciseismedicine.org
International Society of Physical Activity and Health: www.ispah.org

RECOMMENDED READING

REFERENCES

This chapter opens with an exercise we use to introduce the concept of evidence-based practice to final-year students in human movement sciences/ kinesiology (i.e. non-clinicians). If you are an experienced clinician or an expert on evidence-based practice you may want to skip over this chapter!

The “case” for the students to consider involves Mrs J, a 55-year-old woman. Students are told she presents with persistent knee pain due to osteoarthritis. The students are given the information in the box (below) and are asked to suggest a treatment for Mrs J.

In our student exercise we call for a vote and every year the first ballot results in option 1 (surgery) receiving about 80% of the votes! We then lead an open-class discussion and emphasize that the quality of the data should carry more weight than the clinical training of the person providing the advice. Students

Which evidence carries most weight?

You are asked to advise Mrs J, a 55-year-old woman with knee osteoarthritis, as to whether or not knee arthroscopy is a good idea. You have your own personal opinion, and you obtain the following four pieces of further information. Which of the four options carries the most weight with you? Would you advise that surgery is a good idea?

1. Dr X, an expert knee surgeon, advises in favor of surgery because “I have done hundreds of these operations and obtained good or excellent results in over 90% of them.” The surgeon offers you and your friend the phone numbers of patients who can provide testimonials. You call a few of these patients and they all vouch for surgery.

2. A published study of cases done by another surgeon, Dr Y, shows that 75% of patients who have had this type of surgery reported improvements. Overall 75% of patients had an “excellent or good” outcome. Patients were recruited and interviewed two years after the surgery.

3. A published study examined patients who had presented with knee pain to a specialist in osteoarthritis two years earlier. One group of patients had undergone arthroscopic surgery, the other had not. **Patients who had undergone surgery reported playing more golf and tennis than those who had not undergone arthroscopic surgery.** The paper concluded that surgery was associated with superior outcomes compared to conservative management.

4. A physiotherapy student obtained ethics approval to attend doctors’ offices and recruit patients with knee osteoarthritis. The surgeon decided to allocate patients randomly to either “surgery” or “no surgery.” Two years later, the student interviewed the patients again and found that **both groups of patients** (those who had had surgery and those who had not) **had similar levels of pain and function**. Both groups had pain scores of around 50 out of 100 where 100 is severe pain.
review the options and many begin to see the limitations of options 1, 2, and 3. The evidence in option 4 is designed to mimic an important randomized trial that addressed this question.1 (We deliberately avoid the word “randomized” as students are sensitized to this being important, even before they really understand study design.)

The aim of this introduction to the course is for students to link quality of evidence and decision making. This sounds axiomatic, but our experience over many years reinforces that at first students fail to distinguish “evidence” from “eminence.” Students find this practical exercise much more meaningful than a soporific lecture on “research methods.” Students are then primed to engage with the literature with a view to making “quality decisions” together with patients.

Life before evidence-based practice

Clinicians trained after the year 2000 might be surprised that the term “evidence-based medicine” first appeared in 1991.2 Professor Paul McCrory describes that dark period before as a time of “eminence-based practice” but he jests. Nevertheless, a certain amount of clinical training relied on wisdom passing down from mentor to mentor. When clinical trials were few, the opinionated veteran was king. This is understandable in an emerging field.

Sackett and the McMaster contribution

Dr David Sackett and colleagues from McMaster University3–5 described a pedagogical approach to evidence-based practice (Fig. 3.1). This type of health care reflects “the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients. Evidence-based practice integrates individual clinical expertise with the best available clinical evidence from systematic research.”5 Since the mid 1990s, evidence-based practice has been facilitated by the Cochrane Collaboration (www.cochrane.org), which conducts and publishes high-quality systematic reviews of randomized trials of effects of interventions to address a wide range of health problems.

Applying Sackett’s approach to the case of Mrs J (boxed item p. 11), we note that many patients with that clinical presentation have been encouraged to have immediate arthroscopy, based on “expert opinion.” They have not been provided with the full range of options that have been evaluated in research. Armed with the information that is freely available through

![Figure 3.1](link-to-image)

Figure 3.1 Schematic illustration of how clinical skills, evidence from research, and patient desire should overlap to provide the “quality decision” for the patient

![Figure 3.2](link-to-image)

Figure 3.2 Hierarchy of study designs

‘Evidence-based practice’ is the integration of
best research evidence with clinical expertise
and patient values—Dave Sackett

PubMed, the “best evidence” is that a well-conducted randomized controlled trial (RCT), systematic review, or meta-analysis (Fig. 3.2) suggests that arthroscopy is no better than placebo. The pieces of evidence provided in options 1 to 3 in the boxed item on page 11 represent a much lower level of evidence—data with much greater potential for bias and, hence, potentially flawed conclusions. However, “evidence” is not synonymous with randomized trials alone. If there is a question about clinical prognosis, or patient experiences, the best evidence comes from other study designs.6 (See also Recommended reading.)

Different study designs provide different quality evidence (Fig. 3.2). The levels in this figure map
Integrating evidence into clinical practice

Chapter 3

closely, but not perfectly, to the Oxford “levels of evidence” shown in Table 3.1. We use the Oxford levels of evidence in this book.

Table 3.1 Levels of evidence

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Systematic review of homogenous RCTs, individual RCT with narrow confidence interval</td>
</tr>
<tr>
<td>Level 2</td>
<td>Individual cohort study or low-quality RCT</td>
</tr>
<tr>
<td>Level 3</td>
<td>Individual case-control studies, non-consecutive cohort study</td>
</tr>
<tr>
<td>Level 4</td>
<td>Case series</td>
</tr>
<tr>
<td>Level 5</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

This seems obvious—so what is the problem?

Evidence-based practice has intrinsic appeal; however, execution is the challenge. There are not enough individual RCTs, let alone systematic reviews or meta-analyses, to provide a body of evidence for every clinical encounter. For example, your patient might be an elite athlete who earns over US $150,000 per week; however, unfortunately, the relevant RCT was conducted in recreational athletes whose only reward was pleasure.

Also, clinical trials only provide data on “average effects” of interventions; your clinical experience means you can adjust those average effects to estimate what might happen in an individual patient. For example, a highly motivated individual might be expected to do better than average with an exercise intervention—where compliance is important.

In your office, you need to marry three things—the patient’s wishes, the clinical evaluation you performed to make a diagnosis, and the evidence (Fig. 3.1). These elements were all part of Sackett’s original definition of evidence-based practice.7 Unfortunately, some “radical” advocates of pseudo-evidence-based practice forget the importance of the patient’s wishes and your clinical evaluation, and they focus purely on the evidence component. If given license, those folk (usually non-practicing) disempower clinicians who work with real people; these radicals devalue clinicians’ previous experience and patient wishes. If you are a clinician, don’t be disempowered. Embrace evidence-based practice as additional value for your patients.

By incorporating new evidence, your skills are continually updated—you are not stuck in a time warp where you practice today as you did in your year of graduation!

In summary, the health professions combine the art of caring for people with the best that science has to offer. The healing part can be likened to the community “shaman”—or healer. The patient’s perspective and wishes are critical to reaching a “quality decision.” The days of paternalism should be behind us. And remember that the plural of “anecdote” is not “data”!

In summary, the purpose of this chapter is to provide a perspective on evidence-based practice and to encourage interested readers to follow up with their own searches on the topic. Use the Recommended reading below. Evidence-based practice and clinical reasoning form key parts of the curriculum for students in all health disciplines; this chapter is not meant to provide a comprehensive text for that! Enjoy your evidence-based practice classes and remember that the key is to integrate clinical acumen with the evidence to meet the patient’s needs (Fig. 3.1)! That way you’ll make quality clinical decisions!
Fundamental principles

RECOMMENDED WEBSITES
Centre for Evidence-Based Medicine: www.cebm.net
The Cochrane Collaboration: www.cochrane.org

RECOMMENDED READING

REFERENCES
Until recently, the hip joint was not thought to be a significant cause of problems in the athletic population, although hip disorders have long been recognized in the pediatric population (Perthes disease, slipped femoral epiphysis) and older people (osteoarthritis). It was not until the advent of, firstly, MRI, and then hip arthroscopy, that it was realized that the incidence of hip labral and acetabular rim pathology was high, and that anatomical variants such as femoroacetabular impingement (FAI) were a common underlying cause of groin pain.

Hip pain is a common cause of activity restriction in sportspeople. Hip and groin pain is the third most common injury reported in the Australian Football League (AFL), accounting for between 5 and 15% of all football-related injuries; it is also prevalent in many other sports, including tennis, football of all codes, and hockey.

The likelihood of a sportsperson sustaining an injury to the hip joint can be increased by the demands of the sport, in particular, sports that require repetitive hip flexion, adduction, and rotation. Hip joint injury can also be caused by the inherent individual anatomical variations within the joint, such as FAI or developmental dysplasia of the hip (DDH).

The range of motion of the hip is critical in determining the likelihood of intra-articular damage during sporting activity. The demands of range of motion vary between all sporting activities and the levels of activity. As range of motion decreases, the risk of impingement-related damage increases, especially with contact sports.

Intra-articular hip pathologies contribute to both a reduced ability to participate in sporting or physical activities as well as pain and also reduced function during activities of daily living. There is also considerable evidence that hip pathologies are strong contributors to hip, groin, and pelvic pain in young adults.

Burnett et al. demonstrated that 92% of patients with an arthroscopically confirmed labral tear complained of moderate to severe groin pain. Philippon et al. described labral tears and FAI in 100% of professional National Hockey League (NHL) ice hockey players presenting for hip arthroscopy or the treatment of longstanding hip and groin pain. Injury to the ligamentum teres of the hip has been cited as the third most common cause of hip and groin pain in the sportsperson.

In this chapter, we:

- review the functional anatomy of the hip
- provide a clinical approach to assessment of what is often a longstanding problem
- detail the pathologies and management of the many important conditions that are now recognized to cause pain around the hip region.

This chapter should be read in conjunction with the chapter on groin pain (Chapter 29).

Functional anatomy and biomechanics

The hip has three functions:

- It allows mobility of the lower limb.
- It transmits loads between the upper body, trunk, and lower limb.
- It also provides a stable base in weight-bearing activities.
The anatomical structure of the hip allows it to perform these functions.

The hip joint is supported by a number of dynamic and passive supports—these include its bony morphology, passive restraints such as capsule and ligaments, and a complex system of interplaying muscle groups. The biomechanics of the hip joint are generally under-reported in the literature and so are poorly understood. An appreciation of the functional anatomy of the hip and the role of the various structures surrounding the hip will assist in this understanding (Fig. 28.1).

Morphology

The hip joint (femoroacetabular joint) is a tri-planar synovial joint, formed by the head of femur inferiorly and the acetabulum superiorly. The acetabulum sits within the bony pelvis and is normally anteverted (forward-facing) by approximately 23°18 (Fig. 28.2a overleaf). The acetabulum also faces inferiorly and laterally.

The head and neck of the femur are also anteverted—this refers to the most superior aspect of the femoral head and the femoral neck (Fig. 28.2b overleaf). This angle is normally between 10° and 15° in adults. The head of femur also faces superiorly and medially. A reduction in either femoral or acetabular anteversion is considered to increase the risk of hip pathology.

The relationship between the head and neck of the femur, called the head–neck offset, is also very important when discussing the hip joint. This refers to the difference between the greatest diameter of the spherical femoral head and the diameter of the neck measured around the femoral neck axis in any plane (Fig. 28.2c overleaf) and is normally approximately 20 mm in people without hip pain. A reduced head–neck offset (also referred to as a cam lesion) is considered to increase the risk of hip pathology and will be discussed in detail below.

The morphological structure of the hip joint allows the hip to achieve its three planes of movement, being flexion and extension, adduction and abduction, and external and internal rotation.

Acetabular labrum

The acetabulum forms the socket of the hip joint, and is lined with articular cartilage. The acetabular labrum (Fig. 28.3 on page 513) is a ring of fibrocartilage and dense connective tissue which is attached to the bony acetabular rim. The acetabular labrum is thinnest in its anterior aspect.

The blood supply of the labrum enters though the adjacent joint capsule. Only the outer one-third of the labrum is vascularized. Nociceptive free nerve endings are distributed throughout the acetabular labrum, suggesting a pain-producing capacity.
The acetabular labrum has several functions. These are primarily to deepen the acetabulum, to distribute the contact stress of the acetabulum over a wider area (increasing contact area by 28%) and assisting in synovial fluid containment and distribution.

Ligaments of the hip

The transverse acetabular ligament (Fig. 28.3) traverses the acetabular notch, connecting the anterior and posterior edges of the labrum. The deepest layer of labral tissue blend into this ligament. The transverse acetabular ligament is under greatest load in weight-bearing, widening the acetabular notch and placing the transverse acetabular ligament under a tensile load.
The ligamentum teres (Fig. 28.3) is an intra-articular ligament, arising from the fovea of the head of the femur, becoming triangular in shape, with an anterior and posterior branch, which insert into the anterior and posterior aspect of the transverse acetabular ligament respectively. It is covered by the synovium within the hip.

The ligamentum teres is also rich in free nerve endings, which are mechanoreceptors. The ligamentum teres was originally thought to be a histological vestige which becomes redundant early in childhood; however, it is now assumed that the ligamentum teres plays an important proprioceptive role, especially in weight-bearing activities.

The iliofemoral ligament (Y ligament of Bigelow) reinforces the anterior capsule and originates from the anterior iliac spine, fanning into an inverted Y shape to insert into the intertrochanteric line (Fig. 28.4). It is taut in hyperextension and also provides stability in relaxed standing.

The pubofemoral ligament arises from the anterior surface of the pubic ramus and inserts into the intertrochanteric fossa (Fig. 28.4). It is taut in abduction and extension, and also reinforces the anterior capsule.

The ischiofemoral ligament arises from the posterior surface of the acetabular rim and labrum, and extends into the femoral neck just proximal to the greater trochanter (Fig. 28.4). Its fibers run in a spiral pattern and are also taut in hyperextension.

The iliofemoral, pubofemoral, and ischiofemoral ligaments act to restrain hyperextension, which is of particular relevance in relaxed standing.

Chondral surfaces
Both articular surfaces of the hip are lined with articular cartilage. These chondral surfaces rely upon adequate function of the synovium and movement of synovial fluid within the joint to provide nutrition, because articular cartilage is avascular. As both the acetabular labrum and ligamentum teres have been reported to attach to the synovium, they may also play a role in the nutrition and normal function of articular cartilage within the hip joint.

Joint stability and normal muscle function
The bony morphology, acetabular labrum, ligamentum teres, other ligaments, and capsule of the hip
Regional problems

PART B

514

Joint all provide passive stability to the hip joint. Dynamic stability is provided by a complex interplay between various muscles surrounding the hip joint. The concept of deep hip stabilizers, the “hip rotator cuff,” has been present for some years, but has grown in popularity in recent years. In particular, the primary hip stabilizers are thought to provide a posterior, medial, and inferior force on the femur to control the position of the head of femur within the acetabulum. Ultimately, the dynamic control provided by the deep hip stabilizers has potential to minimize stress on vulnerable structures, such as the anterosuperior acetabular labrum, and the anterosuperior acetabular rim (Fig. 28.5).

Recent reports have described the roles of hip muscles, with respect to muscle morphology, primary action of joint movement, and lines of action in relation to the axes of joint movement (Fig. 28.6). Some muscles have greater capacity to generate torque over larger ranges of motion (prime movers), while other muscles are better placed to act as dynamic hip joint stabilizers.

Detailed descriptions of muscle morphology have increased the understanding of the potential roles of individual muscles to act as dynamic hip stabilizers. Muscles with a larger physiological cross-sectional area (PCSA) relative to muscle fiber length (MFL) (i.e., PCSA [cm²] : MFL [cm] >1.0) generate large forces over small length changes and, hence, are considered to be joint stabilizers (Table 28.1). In contrast, those muscles with smaller PCSA relative to muscle fiber length (i.e., PCSA [cm²] : MFL [cm] <1.0) are considered to be “prime movers” of a joint. Generally the hip muscles tend to act as either joint stabilizers or prime movers. However, there are two muscles with both large PCSA and large MFL (gluteus maximus and adductor brevis), which suggests that these muscles are required to act as both stabilizers and prime movers.

The six short hip external rotators (SHER) (obturator internus and externus, superior and inferior gemellus, quadratus femoris and piriformis) have the capacity to provide hip joint compression and, hence, dynamic stability during most weight-bearing and non-weight-bearing activities. The gluteus medius is the dominant hip abductor, and is the primary lateral stabilizer of the hip during one-leg stance activities.

For the patient with hip pain and/or pathology, the clinician should also consider the lines of actions for each of the deep hip stabilizers. For example, although all of the SHER have capacity to provide

Figure 28.5 Muscle attachments around the greater trochanter
Chapter 28

Figure 28.6 Muscles around the hip showing their primary direction of movement

Table 28.1 Hip muscles with primary function as hip stabilizer—primary and secondary actions

<table>
<thead>
<tr>
<th>Stabilizers (PCSA [cm²] : MFL [cm] >1.0)</th>
<th>Primary action</th>
<th>Secondary action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluteus maximus</td>
<td>Extension</td>
<td>Adduction</td>
</tr>
<tr>
<td></td>
<td>External rotation</td>
<td></td>
</tr>
<tr>
<td>Gluteus medius</td>
<td>Abduction</td>
<td>Extension</td>
</tr>
<tr>
<td></td>
<td>External rotation (posterior fibers)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal rotation (anterior fibers)</td>
<td></td>
</tr>
<tr>
<td>Gluteus minimus</td>
<td>Abduction</td>
<td>Flexion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External rotation (posterior fibers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal rotation (anterior fibers)</td>
</tr>
<tr>
<td>Piriformis</td>
<td>External rotation</td>
<td>Abduction</td>
</tr>
<tr>
<td>Quadratus femoris</td>
<td>External rotation</td>
<td>Adduction</td>
</tr>
<tr>
<td>Obturator internus</td>
<td>External rotation</td>
<td></td>
</tr>
<tr>
<td>Inferior gemellus</td>
<td>External rotation</td>
<td></td>
</tr>
<tr>
<td>Superior gemellus</td>
<td>External rotation</td>
<td></td>
</tr>
<tr>
<td>Obturator externus</td>
<td>External rotation</td>
<td></td>
</tr>
<tr>
<td>Pectineus</td>
<td>Adduction</td>
<td>Internal rotation</td>
</tr>
<tr>
<td>Semimembranosus</td>
<td>Extension</td>
<td></td>
</tr>
<tr>
<td>Rectus femoris</td>
<td>Flexion</td>
<td>Abduction</td>
</tr>
</tbody>
</table>

(ad) Primary action and line of action in relation to axis of movement of hip joint in the anatomical position
dynamic hip stability in the anatomical position, the quadratus femoris also has a line of action that is inferomedial. Therefore it has a greater capacity to resist superior translation of the hip. Similarly, the gluteus maximus and four SHERS (piriformis, gemellus inferior and superior, obturator internus) have a line of action that is posteromedial, and may be able to resist anterior force of the hip.31

In contrast, although the gluteus medius is an important lateral stabilizer of the hip, its line of action is both medial and superior28 making it the greatest contributor to both medial and superior hip contact force during walking.30 Furthermore, the anterior fibers of gluteus medius and minimus become hip internal rotators when the hip is flexed.32, 33 The relevance of these factors to the rehabilitation of the patient with hip pain and pathology is described below.

Clinical perspective: making sense of a complex problem

Pain related to the hip joint is commonly seen in athletic populations. Of sportspeople with longstanding adductor-related groin pain, 94% have radiological signs of FAI.34 Of sportspeople with hip and groin pain, 22% have labral tears and 55% of people with mechanical symptoms of the hip have confirmed labral pathology.19 However, despite this prevalence, hip-related pain and associated pathologies have not been well managed in the athletic population until recently. Weir et al.34 reported a mean duration of hip and groin pain in sportspeople of 22 weeks, with the maximum duration 250 weeks (5 years), while many other studies report symptom duration of greater than 2 years.16 Byrd and Jones16 reported an average of 7 months from initial assessment, and multiple other diagnoses being made, before a definitive diagnosis of hip pathology was made.

Hip pain also commonly coexists with other groin-related pathology, such as adductor symptoms, iliopsoas symptoms and pubic symptoms. This makes definitive diagnosis and provision of appropriate management programs difficult and often multifactorial35 (see also Chapter 29).

Causes of hip injuries and pain are shown in Table 28.2. Hints for differentiating hip pain from lateral thigh pain are shown in the box below.

Femoroacetabular impingement

Femoroacetabular impingement (FAI) describes a morphological variant seen in approximately 20% of the general population—it is not in itself pathology.24 There are three types of FAI described.

<table>
<thead>
<tr>
<th>Common Causes of hip injuries/pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior pain</td>
</tr>
<tr>
<td>Synovitis</td>
</tr>
<tr>
<td>Labral tear</td>
</tr>
<tr>
<td>Chondropathy</td>
</tr>
<tr>
<td>Osteoarthritis</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Lateral pain	Referred pain from lumbar spine	Fracture of neck of femur
Greater trochanter pain syndrome		Nerve root compression
Gluteus medius tears and tendinopathy		Tumor
Trochanteric bursitis		
The first type is impingement due to a cam lesion (Fig. 28.7b), sometimes referred to as a Ganz lesion. This describes the reduction in femoral head–neck offset described previously, which results in additional bone being seen at the head–neck junction. This additional bone is also referred to as the “bump.” Cam lesions are most commonly seen on the anterior, superior, or anterosuperior aspect of the femoral neck, and are seen in 78% of people with FAI.

The second type of FAI seen is referred to as “pincer impingement” (Fig. 28.7c). This refers to bony change seen in the acetabulum and is seen in 42% of people with FAI. This can either manifest as a deep acetabulum, which is most commonly seen anteriorly, or as a retroverted acetabulum, which leads to an apparent deeper anterior acetabular wall.

The third type of FAI seen is the mixed presentation where both cam and pincer lesions are seen; this is seen in 88% of people with FAI.

It is unclear whether the development of cam deformity is due to overactivity at the epiphyseal plate between the femoral head and neck during periods of rapid growth in adolescents caused by repetitive torsional forces at the hip; or whether it is due to genetic tendencies. There is now some evidence that FAI has a familial pattern, with siblings being three times more likely to have FAI than controls.

FAI in itself is not a pathology, it is simply a variation of bony structure within the normal range seen. Of the 20% of the population with FAI, only 23% of these people complain of hip pain.

FAI, however, can result in pathology causing pain when the hip joint is placed into a position of impingement in a repetitive fashion during sporting activities, or in a single major traumatic incident such as a motor vehicle accident, or a large fall when the hip is in the position of impingement. The incidence of radiological signs of FAI in sportspeople with longstanding adductor-related groin pain has recently been reported as being 94%.

The most common position of impingement is flexion with internal rotation and sometimes adduction. With most cam and pincer lesions located on the anterior or superior aspect of the hip,
Regional problems

PART B

518

these positions are most likely to bring these surfaces together and cause impingement.

Several authors have postulated an association between FAI and an increased likelihood of developing other intra-articular hip pathologies—these primarily being labral tears, chondropathy, and ultimately osteoarthritis of the hip.5, 6, 8, 11, 38

As there is no conclusive evidence at this stage that indicates that all sportspersons with morphological features of FAI will develop hip pathology, prophylactic surgery to correct deformities in athletes who do not have signs of hip pathology is not recommended.

The early identification of FAI in sportspersons with hip and groin pain is essential. Unfortunately, there is no gold standard in clinical diagnosis of FAI. Clinical signs that are often reported to indicate the presence of FAI include reduced range of hip internal rotation, particularly when the hip is flexed, and a positive FADIR (flexion, adduction, internal rotation) test.

Positive FADIR testing is common in FAI-related damage and radiological examination is required. Plain radiographs can be useful and, generally, a correctly centered plain AP view of the pelvis, along with extended lateral femoral neck X-rays taken at 45° and 90°—the “Dunn views”—will indicate the presence of the morphological features of FAI when read by an experienced radiologist (Fig. 28.8).

Sportspersons who present with FAI and have hip or groin pain should be encouraged to avoid the position of impingement as much as possible. This position of impingement is usually flexion, internal rotation and adduction, or any combination of these (Fig. 28.9). This may involve activity modification on a day-to-day basis, as well as during athletic pursuits. For example, in footballers, this may involve playing in a different position which requires less time changing direction and getting down low to the ball. It may also involve reducing the time spent on the field. Maximizing dynamic neuromotor control around the hip also assists in achieving this goal.

Factors that may contribute to the development of hip-related pain

Certain factors may contribute to the development of hip-related pain. These factors all alter the loads on the hip joint, thus placing structures within and around the hip joint under duress, which may eventuate in pain. These contributing factors can be classed as either extrinsic or intrinsic factors.

Extrinsic factors

Extrinsic factors include the type of sports played, particularly those involving repeated combined hip flexion, abduction and adduction, and loaded rotational or twisting movements. Extrinsic factors may

Figure 28.8 Radiological appearances of the types of FAI

Figure 28.9 Hip impingement during football
also include the volume of sport and activity undertaken, footwear worn, and type of surface played upon. Of these extrinsic factors, the type of sport and volume of load undertaken are probably the most important when evaluating the sportsperson with hip-related pain.

Repeated hip flexion, abduction and adduction, and rotation and twisting are reported throughout the literature as influencing the likelihood of the development of hip pathology. The clinician must examine these loads in detail and modify them accordingly for sportspeople who experience hip-related pain.

Intrinsic factors

Intrinsic factors can also influence the development of hip pain and pathology. These factors may also alter loads within the joint, predisposing the hip to injury. Intrinsic factors are considered as either “local” or “remote,” and both must be considered for comprehensive assessment of the sportsperson with hip-related pain. Identifying these factors via thorough assessment is essential if the clinician is to successfully modify the loads within the joint to protect potentially vulnerable structures.

Local factors

The following local factors may contribute to the development of hip-related pain. These are shown Table 28.3 overleaf.

Reduced hip flexion

Reduced hip flexion may indicate the presence of FAI. In sportspersons with hip pain, this must be assessed to ensure the sportsperson has adequate range of hip flexion to meet the demands of the sport, particularly sports that involve repetitive end-range flexion (e.g. football, gymnastics).

Hip flexion can be assessed reliably in supine position, with the contralateral thigh stabilized with a seatbelt (Fig. 28.10a on page 521), using either a goniometer or inclinometer. Any pain experienced at the end range of flexion must be noted.

Reduced hip internal rotation

Reduced range of hip internal rotation may also indicate the presence of morphological changes such as FAI, slipped upper femoral epiphysis (SUFE), Perthes, or dysplasia that may predispose the sportsperson to hip pathology. Many sports demand certain ranges of hip internal rotation, and these ranges must be established if a sportsperson is to participate in the sport without the risk of hip pain. This should be assessed in both a neutral range of hip flexion, and at 90° of hip flexion.

This range can be assessed reliably with either an inclinometer or goniometer, with the patient prone for hip neutral, and sitting for 90° of flexion, with the contralateral thigh stabilized (Fig. 28.10b on page 521).

Reduced hip extension

Reduced hip extension may predispose to hip pain, as it is possible that loads are placed on the anterior margins of the joint as the sportsperson attempts to gain more range during the end stage of stance in running and gait. The anterior margins of the joint are considered to be highly vulnerable to injury, and must be protected from overload. Hip extension range of motion can be measured reliably in supine position at the end of the plinth, with an inclinometer (Fig. 28.10c on page 521).

Increased femoral adduction/internal rotation during functional tasks

Increased femoral adduction and/or internal rotation during functional tasks may place the hip in a position of impingement, thus increasing loads on vulnerable joint margins such as the acetabular labrum and acetabular chondral rim. This is especially important for the patient with lost range of motion.

Increased femoral adduction motion should be assessed in both static and dynamic activities, such as a single-leg squat, walking, and running. Videotaping the sportsperson performing functional tasks may assist the clinician in identifying increased adduction/internal rotation (Fig. 28.10d on page 521).

Remote factors

The following remote factors may contribute to the development of hip-related pain.

Proximal factors

Increased pelvic tilt and/or lumbar hyperextension may increase the load on the anterior margins of the hip, due to the more distal placement of the anterior acetabular rim. This increased load may be a source of increased hip pain and eventually anterior hip pathology. The clinical assessment of pelvic symmetry and lumbar spine is outlined in Chapter 26.

Inadequate control of the lumbopelvic segments may result in a number of asymmetries, which alter the loads on the hip joint. In particular, lateral pelvic
Tilt may increase load on both the lateral and medial structures of the hip joint, due to the increased adductor and internal rotation moment seen on the stance leg.

Control of the hip and lumbopelvic control can be assessed using the single-leg squat (Chapter 8), other single-leg activities, and gait- or sports-specific activities. In some cases, the sportsperson should also be videotaped while running, particularly when fatigued, as altered control may become more pronounced. The demands on the lumbopelvic region for the individual’s sport must be considered, as this may predispose certain athletic groups to fatigue and subsequently altered load on the hip joint.

Distal factors

Increased subtalar pronation may lead to an increase in tibial internal rotation. This may lead to an overload on the iliobial band and the lateral structures of the hip. Increased iliobial band tension leads to increased compression over the greater trochanter, and the development of gluteus medius and minimus

Table 28.3 Local factors that can contribute to the development of hip-related pain

<table>
<thead>
<tr>
<th>Factor</th>
<th>Possible mechanisms— structural</th>
<th>Possible mechanisms— functional</th>
<th>Confirmatory assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced hip flexion range of motion</td>
<td>Cam lesion</td>
<td></td>
<td>Plain X-ray AP pelvis</td>
</tr>
<tr>
<td></td>
<td>Pincer impingement</td>
<td></td>
<td>Dunn view 45°/90°</td>
</tr>
<tr>
<td></td>
<td>Dysplasia</td>
<td></td>
<td>Positive FADIR</td>
</tr>
<tr>
<td>Reduced hip internal rotation range of</td>
<td>Acetabular retroversion</td>
<td></td>
<td>Plain X-ray AP pelvis</td>
</tr>
<tr>
<td>motion</td>
<td>Reduced femoral head–neck offset (cam lesion)</td>
<td></td>
<td>Dunn view 45°/90°</td>
</tr>
<tr>
<td></td>
<td>Pincer impingement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Femoral retroversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Osteoarthritis changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(osteophytes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced strength hip internal rotators</td>
<td></td>
<td>Hand-held dynamometry</td>
</tr>
<tr>
<td></td>
<td>Tight gluteals and piriformis</td>
<td></td>
<td>Muscle length tests</td>
</tr>
<tr>
<td></td>
<td>Muscle spasm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced hip extension range of motion</td>
<td>Acetabular anteversion</td>
<td></td>
<td>Plain AP X-ray</td>
</tr>
<tr>
<td></td>
<td>Dysplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tightness hip flexors, quadriceps</td>
<td></td>
<td>Muscle length tests</td>
</tr>
<tr>
<td></td>
<td>Reduced hip extensor strength</td>
<td></td>
<td>Hand-held dynamometry, and manual muscle tests</td>
</tr>
<tr>
<td>Increased femoral adduction/internal</td>
<td>Developmental dysplasia of the hip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rotation motions</td>
<td>Acetabular or femoral anteversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced hip abductor strength</td>
<td></td>
<td>Hand-held dynamometry, and manual muscle tests</td>
</tr>
<tr>
<td></td>
<td>Reduced hip extensor strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced hip external rotator strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced neuromotor control/proprioception</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hip-related pain

Chapter 28

B tendinopathy, and trochanteric bursitis. Increased tibial internal rotation may also create increased internal rotation of the femur, thus heightening load on the hip, particularly in sportspeople with an increased risk of impingement. The clinical assessment of the subtalar joint is outlined in Chapter 40.

Adequate range of ankle dorsiflexion during the stance phase of gait is essential in order to minimize excessive loads further up the kinetic chain. If this movement is limited, the gait pattern may be altered to achieve onward forward propulsion of the sportsperson. One adaptation commonly seen is an increase in hip adduction and rotation at the middle of the stance phase of gait. This may increase load on the hip joint in similar ways to those outlined above. The clinical assessment of ankle dorsiflexion range of motion is outlined in Chapter 38.

Clinical assessment

History

It is important to obtain a full history from the patient prior to undertaking a physical examination or obtaining any investigations. This history should include:

- age, general health, past medical history (including presence or absence of childhood conditions such as
“clicky hips,” slipped upper femoral epiphysis (SUFE) or infantile dysplasia) and medications
• weight and height (BMI)—BMI >25 can increase severity of symptoms of osteoarthritis and tendinopathy, as well as increase joint loads
• exact mechanism of injury (if known), including onset as sudden or insidious
• time since onset of symptoms
• pattern of symptoms since onset (worsening, improving or not changing)
• family history—there may be a genetic predisposition to FAI and osteoarthritis of the hip
• presence of mechanical symptoms such as locking, clicking, or giving way—suspect labral or possibly ligamentum teres pathology
• location of pain—hip pathology may present as groin, lower back, lateral hip, buttock, or thigh pain, and secondary sources of pain such as muscle spasm may be present, complicating the assessment
• nature of pain (intensity, severity, constancy, time of day, latency)—will provide clues as to presence of inflammation, synovitis, bursitis, or tendinopathy in addition to intra-articular pathology
• neurological signs and low back pain—the lumbar spine can refer pain to the hip and should be eliminated as a potential primary source of pain
• aggravating factors—be specific regarding position of hip and potential for impingement during these activities, how long it takes for these activities to provoke pain, and latent pain
• current level of activity (frequency and intensity of lower limb loading)—tendon-related pain may need to be assessed over a period of three days
• factors easing pain—be specific regarding positions of ease as well as time required for pain to ease
• current sporting history—including level of sport (community, state, national, and position played within the team); certain positions will place the hip under more load, such as midfield in AFL football
• previous sporting history—certain sports played may increase the likelihood of a hip injury (e.g. dancing, gymnastics, martial arts, tennis, hockey)
• desired level of future sporting activity—this is important to establish in order to determine level of intervention as well as future risk of injury
• activities of daily living—including occupation, length of time spent sitting, amount of hip flexion and rotation and degree of manual labor within occupation, family situation including the presence of young children
• any past treatment, including investigations, conservative treatment, or surgical intervention.

Examination

Examination of the hip is in the Clinical Sports Medicine masterclasses at www.clinicalsportsmedicine.com.

Examination involves:

1. Observation
 (a) standing
 (i) general lower limb alignment
 (ii) femoral alignment
 (iii) pelvic symmetry
 (iv) muscle tone and symmetry
 (b) walking
 (i) pain
 (ii) limp
 (iii) lateral pelvic stability—Trendelenburg sign
 (c) supine
 (i) leg length

2. Active movements
 (a) hip flexion/extension
 (b) hip abduction/adduction
 (c) hip internal/external rotation at both neutral and 90° flexion
 (d) bent knee fall-out

3. Passive movements
 (a) adductor muscle stretch (Fig. 28.11a)
 (b) anterior impingement test (hip quadrant)—flexion, adduction, internal rotation (Fig. 28.11b)
 (c) internal rotation at 90° flexion
 (d) flexion, abduction, and external rotation (FABER or Patrick’s test) (Fig. 28.11c)
 (e) quadriceps muscle stretch
 (f) psoas muscle stretch/impingement (Thomas position) (Fig. 28.11d overleaf)

4. Tests of muscle function
 (a) adductor squeeze test (Fig. 28.11e overleaf)
 (b) hand-held dynamometry of hip muscle strength bilaterally
 (i) flexion/extension
 (ii) adduction/adduction
 (iii) internal/external rotation
 (c) Real-time ultrasound assessment of deep hip stabilizers and deep core
 (d) de-rotation test (Fig. 28.11f overleaf)

5. Palpation
 (a) adductor muscles/tendons/entheses
 (b) pelvis including pubis symphysis, ischial tuberosities, proximal hamstring attachment
 (c) iliopsoas in muscle belly and at anterior hip joint (Fig. 28.11g overleaf)
Hip-related pain

6. Functional movements
 (a) single-leg squat (Fig. 28.11h on page 525)
 (b) hopping (to reproduce pain)
 (c) forward hop
 (d) step up and down on the affected leg (observe stability, pain level, and pain location) (Fig. 28.11i on page 525)
 (e) side step up and down on the affected leg
 (f) hip hitch (in neutral, internal, and external rotation), keeping the knee extended (Fig. 28.11j on page 525)
 (g) kicking (if appropriate)
 (h) balance and proprioception

(d) superficial hip abductors including tensor fascia lata, gluteus medius, superior gluteus maximus
(e) greater trochanter and tendons of gluteus medius and minimus

Figure 28.11 Examination of the patient with hip-related pain

(a) Passive movement—adductor muscle stretch

(b) Passive movement—anterior impingement (hip quadrant: flexion, adduction, and internal rotation—FADIR). This is a combined movement that is performed if hip range of motion is normal in single planes.

(c) Passive movement—flexion, abduction, and external rotation (FABER or Patrick’s test). Range of motion, apart from extreme stiffness/laxity, is not that relevant. Some caution needs to be exercised, as it is possible to sublux an unstable hip in this position. Pain felt in the groin is very non-specific. Pain in the buttock is more likely to be due to sacroiliac joint problems. However, pain felt over the greater trochanter suggests hip joint pathology.
We emphasize that each individual clinician needs to develop his or her own technique for examining this joint. Between the masterclasses online and this outline, you see a range of options you can incorporate into your practice.
Investigations

X-ray, MRI, and ultrasonography are the mainstay of imaging for diagnosis of hip pathology. Plain X-rays are often overlooked by clinicians, but usually should be the first investigation ordered as they can provide valuable information. FAI can often be seen on an AP view of the pelvis and Dunn views of the hip (Fig. 28.8). Similarly these X-rays can also guide the clinician to the presence of osteoarthritis, and abnormalities in morphology such as acetabular dysplasia, acetabular retroversion or anteversion, the presence of os acetabulare, and not-to-be-missed pathologies such as a slipped upper femoral epiphysis, Perthes disease, tumors, fractured neck of femur, and avascular necrosis. Unfortunately a plain radiograph does not provide information about soft tissue injuries such as labral, chondral, or ligamentum teres pathology.

CT scans are generally not utilized as a diagnostic tool for hip pathology, as most diagnostic information is usually obtained by clinical examination, a plain radiograph, and MRI. However, surgeons will often obtain specific CT scans preoperatively to
assist them in planning surgery for the treatment of FAI. The POD (Pritchard–O’Donnell) “position of discomfort” protocol CT gives surgeons specific three-dimensional images (Fig. 28.12) providing information regarding impingement sites, femoral head–neck morphology and version, acetabular overhang and version, and joint space loss anterosuperiorly. Surgeons may obtain specific CT scans preoperatively to assist them in planning surgery for the treatment of FAI.

MRI is commonly used in the diagnosis of soft tissue injuries of the hip. Pathologies such as labral tears, ligamentum teres tears, tendon and bursae pathology and, occasionally, chondral defects may be seen on an MRI scan. Unfortunately the sensitivity and specificity of MRI to these injuries is not high, and false-negative results are often noted.

Due to the depth of the joint, diagnostic ultrasound is not especially useful for the diagnosis of intra-articular hip pathology; however, it can be useful in determining the presence of bursae of the greater trochanter or iliopsoas tendon, and tendinopathy of these regions. Real-time ultrasound can be used to assess the function of the deep lumbar and hip stabilizing muscles.

Diagnostic injections of local anesthetic are used frequently in the hip to determine the presence of intra-articular pathology of the hip. These are generally performed under imaging guidance. A reduction in symptoms following an injection generally confirms the presence of intra-articular pathology, although a negative response does not necessarily indicate that no pathology is present, and further investigation and management may still be warranted.

Labral tears

Tears of the acetabular labrum (Fig. 28.13) are seen commonly in the athletic population, with 22% of sportspeople with groin pain having labral tears, and 55% of patients with mechanical symptoms and hip pain having labral tears.19, 22, 45–46 The etiology of labral tears is well described in the literature.

The presence of both FAI, 5, 8, 10, 37, 46 and developmental dysplasia of the hip (DDH)47, 48 has been repeatedly shown to increase the risk of a labral tear. This is thought to be due to impingement of the labrum in the presence of FAI and increased shear forces on the outer joint margins including the labrum, in the presence of DDH.

The prevalence of labral tears in the US and Europe is greatest anteriorly.19, 22, 45, 49 Various causes for the high number of anterior labral tears have...
been postulated, including reduced thickness of the labrum anteriorly, the prevalence of FAI lesions seen anteriorly resulting in anterior impingement, and common functional activities, especially those with repetitive twisting and pivoting of the hip.10

The reduced bony support seen anteriorly in the hip due to the anteverted position of the acetabulum, which results in higher shear forces on anterior soft tissue structures, is also a likely cause of labral pathology. It has been shown that in the last 20–30% of the stance phase of gait, and in more than 5° of hip extension, increased forces are placed on anterior soft tissue structures by the head of femur.19, 50

Tears of the acetabular labrum are usually classified as type I or type II tears.22, 51 Type I is described as a detachment of the labrum from the articular hyaline cartilage at the acetabular rim. Type II is described as cleavage tears within the substance of the labrum. The location of these tears relative to the vascularization of the labrum must be considered when establishing the potential for healing of the tear, and the most appropriate type of intervention.

The identification of labral tears in patients remains difficult. The patient often complains of mechanical symptoms such as locking, clicking, catching, and giving way. The location of pain is usually reported to be within the anterior hip or in the anterior groin region, although some patients report pain in the posterior buttock.

Clinical examination is also difficult, as most clinical tests have poor sensitivity and specificity regarding the type and location of pathology, although the FADIR (Fig. 28.11b) and FABER (Fig. 28.11c) are often described as being appropriate for the diagnosis of labral pathology.

Radiological investigations remain unreliable, with MRA the only investigation having a reasonable degree of sensitivity and specificity19 (Fig. 28.13b).

Labral tears are often suspected, but not confirmed until patients present for hip arthroscopy, which remains the gold standard for diagnosis of labral pathology.19, 22

Sportspeople with labral pathology may respond to conservative management, and this should usually be trialed prior to undergoing surgery, except possibly in those patients with large bumps who are engaging in activity that demands more range of motion than the sportsperson safely achieves before impingement. Management should be directed to unloading the damaged labrum, which is almost always anterior and/or superior.

Repetitive hip flexion, adduction or abduction, and rotation at the end of range should be avoided through activity modification. Improving hip joint neuromotor control via activation of the deep stabilizing muscles, initially in an unloaded and then a progressively loaded manner, appears to assist in the unloading of the labrum.

Gait retraining may also be undertaken to minimize excessive hip extension at the end of stance phase of gait, as increased hip extension has been demonstrated to increase the loads on anterior hip joint structures.52 Neuromotor control of the hip should be maximized and any remote factors influencing the mechanics of the hip should be addressed.

Ligamentum teres tears

Tears of the ligamentum teres (Fig. 28.14 overleaf) are seen frequently in sportspeople undergoing hip arthroscopy, and are being reported more frequently in the literature. Studies have found up to 70% of sportspeople undergoing hip arthroscopy for FAI and labral tears also have tears of the ligamentum teres.10

Tears of the ligamentum teres are classified as:

- type I—a partial tear
- type II—a complete rupture
- type III—a degenerate ligament.53

The mechanism of injury for ligamentum teres most commonly involves forced flexion and adduction, and often internal or external rotation.53 Twisting motions and hyperabduction injuries have also been reported to cause a tear to this ligament.
With the likelihood of the ligamentum teres playing a large proprioceptive and stabilization role of the hip becoming increasing recognized, the prompt diagnosis and management of these injuries in the sportsperson is essential. Likewise, any surgical procedure that sacrifices the ligamentum teres through open dislocation should be carefully considered.

The symptoms of a ligamentum teres tear appear to be similar to other intra-articular hip pathologies, with most patients complaining of deep groin and/or medial/anterior thigh pain, catching, reduction in range of motion, and night pain. Clinically these patients will also often present with significant increased tone of the adductor muscle group, and an injured ligamentum teres when touched with a radiofrequency probe intraoperatively can generate an addition moment force powerful enough to reduce the hip while in traction. These patients also present with reduced strength of the hip external rotators and extensors.

There are presently no established radiological or clinical tests that reliably identify tears of the ligamentum teres, and hip arthroscopy is the gold standard in diagnosis of these tears. However, Pritchard et al. have recently developed a clinical test that may have clinical utility. The test aims to place the femoral head and neck into a position that avoids bony and soft tissue impingement, while placing traction on the ligamentum teres by moving the hip through a full range of internal and external rotation.

The test is performed with the patient's hip flexed to full flexion without tilting of the pelvis (Fig. 28.15). The hip is then extended by 30 degrees. From this position (full flexion minus 30 degrees), the hip is moved into full abduction and then adducted 30 degrees (full abduction minus 30 degrees). The hip is then internally and externally rotated through full range. The presence of pain is considered a positive test.

Often ligamentum teres pathology is not confirmed until a sportsperson presents for surgery, but it should be suspected in episodes involving the mechanism of injury mentioned above. The principles of management of ligamentum teres pathology are similar to those for labral pathology, with a particular emphasis on regaining neuromotor control, excellent proprioception, and avoiding positions that place the ligament under most stress through activity modification.

The sportsperson with a ligamentum teres injury often presents with extremely overactive long adductors, which can be a source of considerable additional discomfort. This should also be managed with appropriate myofascial techniques, trigger point dry needling, and gentle stretching.

Synovitis

Synovitis (Fig. 28.16) is often seen in sportspersons with other intra-articular hip pathologies—whether FAI, labral tears, ligamentum teres tears or chondropathy. One surgical study found synovitis coexisting in 70% of sportspersons with hip joint pathology. It is rarely seen as a primary entity. Synovitis can cause considerable pain in the hip joint, with night pain and pain at rest being common presentations.

Synovitis is a concern to the clinician because of the pain and the associated changes in muscle
activation that are seen around the hip in the presence of pain. In addition, the implications of synovial dysfunction on cytokine production, nutrition, and hydration of articular cartilage, which may already show signs of chondropathy, are significant for the long-term health of the hip joint.

Management should be aimed to addressing the other coexisting pathology, restoring normal neuro-motor control around the hip, modifying loads, and also anti-inflammatory treatment such as oral non-steroidal anti-inflammatory drugs (NSAIDs) or intra-articular injection.

Chondropathy

Changes to the chondral surfaces of the hip are often seen in conjunction with other hip pathologies (Fig. 28.17). It is well reported that the presence of FAI, decreased acetabular anteversion, labral pathology, and developmental dysplasia of the hip (DDH) will lead to an increased risk of chondropathy and ultimately osteoarthritis of the hip. In patients with significant labral pathology, chondral loss is often up to 70% of the full thickness—or Outerbridge grade III or IV.

A study examining hip pathology in AFL footballers found that full-thickness chondral loss of >30% of the acetabular depth anteriorly was found in 52% of players, who also all had labral tears and FAI. It is also proposed that the presence of longstanding synovitis may also affect the nutrition of chondral surfaces, possibly exacerbating chondral damage.

The majority of chondral lesions are seen on the anterior or superior aspect of the acetabular rim, at the chondrolabral junction. This is not surprising considering that this is also the location for the majority of cam and pincer lesions, and the majority of labral tears.

Developmental dysplasia of the hip (DDH) also involves a reduction in the bony coverage of the femoral head by the acetabulum; thus the anteriorly directed forces of the femoral head will be concentrated on a smaller surface area on the anterior aspect of the joint.

The clinical diagnosis of chondropathy may be confirmed with plain radiographs, although early chondral changes will not visible. MRI may identify earlier chondral lesions, although the extent of
Regional problems

Chondropathy is often only evident on hip arthroscopy.\(^2\) Chondropathy is difficult to manage and may be difficult to confirm in the early stages without arthroscopic confirmation. If suspected, the management again is similar to that of labral pathology, as the majority of chondral lesions of the hip occur in the anterior aspect of the acetabular rim at the chondrolabral junction. As such, this region should be unloaded in the same fashion as labral pathology, with an emphasis on regaining normal neuromotor control of the hip. Recent evidence has shown atrophy in inferior gluteus maximus and hypertrophy in gluteus medius in osteoarthritis, with atrophy also occurring in gluteus medius in severe osteoarthritis.\(^3\) \(^4\)

Attempts to minimize synovitis should also be made, as the synovium and synovial fluid play an important role in articular cartilage nutrition. Obesity and lack of exercise aggravate the symptoms of osteoarthritis. The outcomes of hip arthroscopy for individuals with significant chondral loss are generally worse than for those with no chondral loss.\(^5\) \(^6\) Where chondral surface damage is found, conservative measures should be attempted first, and in some cases the sportsperson should be counseled to modify the amount of weight-bearing activities they undertake.

Rehabilitation of the injured hip

Rehabilitation of the injured hip requires careful consideration of the interplay between pain and loading (including progression of exercises and activities). Importantly, due to its role in all activities of daily living, including simple activities such as sit-to-stand, standing, and walking, it is hard to “rest” the hip. It is vital that the patient and the clinician have a good understanding around monitoring joint loads and the loading response.

The general principles of management of hip pathology are straightforward and consistently reported in the small amount of literature available concerning rehabilitation of the hip.\(^10\) \(^19\) \(^64\) \(^65\)

Unfortunately there is no evidence available other than clinical commentaries that evaluate the effectiveness of particular principles of rehabilitation of the hip.

The three most commonly reported principles of rehabilitation are shown in the box.

This section discusses each of these general principles, and then applies them to commonly seen conditions of the hip. We then outline the application of these principles of management to patients post-hip arthroscopy surgery.

Unloading and protecting damaged or potentially vulnerable structures

The most effective way to unload and protect specific structures of the hip varies slightly for different pathology, based on the understanding of the functional anatomy and biomechanics of the hip. When addressing the loads on structures outlined below, the principles of management of neuromotor control and remote factors should also be applied. Managing the load of the hip can be particularly difficult as the sportsperson has to walk about simply for activities of daily living. Thus it is vital that their ability to walk, stand, and perform everyday activities such as getting in and out of a chair is managed in such a way that these activities do not aggravate the underlying pathology.

Restoration of normal dynamic and neuromotor control

Restoration of dynamic and neuromotor control around the hip follows the same principles as other joints.

Phase 1: Deep hip stabilizer retraining

The short hip external rotator (SHER) muscles are those with the greatest capacity to provide dynamic stabilization of the hip (see above). Retraining of these deep hip stabilizers may be undertaken in the early stages of rehabilitation. As it does with other pain conditions,\(^66\) \(^67\) clinical observation indicates that pain appears to inhibit effective activation of the SHER muscles. Therefore, pain must be well controlled.

The initial step involves educating the patient in the role of the SHER muscles to provide dynamic hip stability, and the location and actions of these muscles. The second step involves facilitating independent

Three key principles of rehabilitation

1. Unload and protect damaged or potentially vulnerable structures within and around the joint.
2. Restore normal dynamic and neuromotor control around the hip joint.
3. Address other remote factors that may be altering the function of the kinetic chain.
contraction of these muscles. This is often best commenced in 4-point kneeling (Fig. 28.18a), where the patient is taught to activate the SHER muscles and then perform an isometric external rotation contraction against minimal resistance. The aim is to produce a low-level tonic hold of these muscles. In this position (90° hip flexion), the contribution from the larger external rotator (gluteus maximus) is reduced (see the section about joint structure and muscle function earlier in this chapter), thus enabling more specificity of activation for the SHER muscles.

Both the patient and the clinician must be confident that the deep hip stabilizers are activated and a real-time ultrasound machine may assist with providing feedback. Progression of the retraining includes providing different levels of resistance, number of repetitions, and speed of movements. Other progressions include increasing the amount of hip flexion, and decreasing the support (i.e. lifting one hand) to increase the balance demands and challenge to lumbopelvic stability.

Further progressions include activation of the deep hip stabilizers (Fig. 28.18b) in a variety of degrees of hip range of motion and in various functional positions as the activity of the sportsperson demands, and can be assessed using a real-time ultrasound in these varying positions. For example, a sportsperson who performs regularly in positions of hip flexion such as a deep squat should ultimately perform muscle activation in this position.

Phase 2: Gluteus maximus retraining
Gluteus maximus plays an important role in generating extension and external rotation torque, and has the potential to provide hip stabilization by resisting anterior hip force.28,31 Facilitation of independent gluteus maximus contraction may be best commenced prone (Figs 28.19a, b overleaf), where the patient is taught to perform an isometric external rotation contraction against minimal resistance (low-level tonic hold of these muscles). As with the SHER muscles, feedback may assist in ensuring that the muscle is activated. Since the gluteus maximus is more superficial, feedback may be provided by palpation, surface EMG biofeedback, or real-time ultrasound machine.

The activation of the gluteus maximus should be undertaken in a variety of degrees of hip range of motion determined by the functional demands the athlete’s activity requires, and can be assessed using a real-time ultrasound in these varying positions. For example, hip abduction and external rotation, or hip adduction and internal rotation for a sportsperson who performs cutting maneuvers, or in hip flexion for a sportsperson who is required to perform in a deep squatting position. It should be then progressed from open chain to closed chain and then functional positions.
Phase 3: Generalized strengthening exercises

Generalized hip strengthening exercises should only be commenced when the patient and clinician are confident that the key stabilizing muscles can be activated and the activation maintained. During this phase, the aim is to restore muscle function (strength, endurance) and proprioception. This phase remains low-impact (Fig. 28.20a). Exercises should initially be undertaken with specific activation of the deep stabilizers prior to commencing the exercise. This ensures that the sportsperson has adequate control of the hip prior to placing it under load, which will assist in protecting vulnerable or damaged structures within the hip.

Generalized hip strengthening exercises should be undertaken, based on clinical assessment. For example, hip abductors (predominantly gluteus medius) should be targeted for those with reduced hip abduction strength.

Strengthening exercises need to be targeted to the needs of the individual, progressed according to patient responses, and targeted to the sporting/physical requirements. For example, a sportsperson who regularly jumps and lands (such as a netballer or gymnast) should incorporate these actions into their rehabilitation program (Fig. 28.20b).

Exercises are frequently commenced in prone (to ensure specificity and isolation of muscle activations) or in 4-point kneeling and then progressed into functional/weight-bearing positions, bilaterally and then unilaterally (Figs 28.20c–e).

Phase 4: Functional and sports-specific activity

Once good neuromotor control of the deep hip stabilizers and global hip muscles has been regained, functional and sport-specific activities should be assessed, and then undertaken, both to retrain these...
movement patterns but also ensure the sportsperson can cope with these activities without failing.

Any retraining of functional activities should focus on pre-activation of the deep hip stabilizers, adequate control of the lumbar spine and pelvis during the activity, and correct alignment of the femur during weight-bearing tasks (Fig. 28.21 overleaf).

Retraining of hip stabilizers should be performed in the positions that place the hip at greatest risk of overload, such as direction change and pivoting, deep squatting, and kicking. They should also be undertaken in a repeated fashion, again to ensure the sportsperson does not fail in a controlled environment.

Criteria for returning to sport
The decision regarding a patient’s readiness to return to sport is made using clinical judgment of the individual’s functional capacity. In the absence of robust scientific evidence, the following criteria are suggested:

- performance on the one-leg hop test (or other single-leg functional tests) at least 90% of the uninjured side (if unilateral symptoms)
Address other remote factors that may be altering the function of the kinetic chain

As outlined previously, a number of remote factors (e.g. lumbopelvic control) are likely to influence the rehabilitation of hip pain and pathology. Therefore, all potential contributing factors should be addressed and treated appropriately.

Surgical management of the injured hip

Hip arthroscopy is the gold standard for the diagnosis of early chondral, labral, or ligamentum teres pathology, and has indications ranging from diagnostic purposes through to removal of loose bodies, labral tears, chondral lesions, FAI, version abnormalities, and dysplasia.

Hip arthroscopy has evolved substantially over the last 10 years, with improved technique and dedicated instrument design. It is now commonly performed to manage intra-articular hip pathologies, including labral tears. Hip arthroscopy has revolutionized hip surgery, since this minimally invasive procedure is associated with considerably less morbidity than open procedures.

Open surgical indications include femoral and acetabular osteotomies for dysplasia and for treatment of unusual FAI morphology. Internationally, the number of hip arthroscopy procedures now performed is growing rapidly, with 30,000 procedures performed in 2008, with this number expected to increase by 15% annually.

The basic principles of arthroscopic hip surgery are to treat damaged tissues to allow the healing process to be maximized. This often involves debridement of the irreparable tissue, and stimulation of a

Figure 28.21 Retraining of functional activities—single-leg hop for distance
healing response. The joint is assessed for mechanical optimization to assist with healing and help prevent further damage through mechanical insult. Range of motion is critical in this assessment.

Clinically, patients presenting for hip arthroscopy surgery tend to be grouped into two categories:
- those diagnosed with soft tissue pathology resulting from bony morphological variations, requiring reshaping on one or both sides of the joint to increase the available range of motion prior to impingement
- those not requiring bony intervention but presenting with soft tissue injuries requiring intervention.

The first group includes patients with FAI which may be cam, pincer, or mixed impingement. This group have coexisting labral pathology, ligamentum teres pathology, or chondral lesions.

Incidental findings of FAI-related morphology without typical associated pain need no intervention, merely education and observation.

The second group includes those with soft tissue pathologies, but without morphological change requiring surgical intervention. Soft tissue pathologies include labral pathology, ligamentum teres pathology, chondral lesions, synovial pathology, loose bodies, crystalline hip arthropathy, infection, and any combination of these. Patients with these lesions may have co-existing issues such as dysplasia or hypermobility which predispose them to such injuries, but do not require surgical intervention. This group also includes patients with essentially normal morphology but who undergo a massive single episode of excessive range (usually rotation) which causes trauma to the associated soft tissues.

Hip arthroscopy is a demanding procedure with a steep learning curve requiring advanced training. Debridement of labrum, ligamentum teres, and chondral surfaces require less recovery time and less rehabilitation than more complex procedures (e.g., labral refixation and associated rim excision, and femoral head–neck reshaping for cam deformity).

The body of evidence examining outcomes following hip arthroscopy is growing rapidly, although most studies are case series (level IV) evidence. The majority of the literature focuses on outcomes following surgery for FAI, labral pathology, chondropathy, or combined pathology.

Three systematic reviews have examined outcomes following hip arthroscopy. They each concluded that short-term outcomes are generally promising for hip arthroscopy treatment of FAI and labral pathology, although outcomes are generally poorer if significant chondropathy is observed; further long-term studies are required.

Ten-year outcome studies examining outcomes in hip arthroscopy have reached similar conclusions to the systematic reviews, mostly finding good outcomes unless significant chondral loss is present, with a number of those with significant chondral loss eventually progressing to joint replacement surgery. These studies looked at all pathologies, and are somewhat limited by the enormous change in surgical technique that has occurred in the last decade.

Two specific studies looked at outcomes of hip arthroscopy in elite sportspeople. The populations included were AFL footballers and NHL ice hockey players, both of which have a high rate of hip and groin pain. Both studies examined FAI and labral pathology and found good short-term outcomes, patient satisfaction, and return-to-sport levels, although each study was limited by the short follow up of two years. Further longer term follow-up in sportspeople needs to be undertaken in order to conclusively understand the outcomes of these procedures in sportspeople.

Rehabilitation following hip arthroscopy
Rehabilitation following hip arthroscopy has been described in the literature in a number of clinical commentaries, and essentially follows the same conservative principles of management outlined above. Generally osteochondroplasties performed for the correction of FAI must be protected for at least six weeks, as should microfracture surgery performed for chondral defects.
Labral debridement and repairs should be protected for 4–6 weeks, ensuring the sportsperson avoids potential positions of impingement through activity modification and normalization of neuromuscular control around the hip.
Injuries to the ligamentum teres should be protected for six weeks by avoiding end-range positions that place the ligament under stress, and ensuring excellent neuromotor and proprioceptive control around the hip.

During this initial protective phase, the sportsperson should commence active rehabilitation of the deep hip stabilizers, initially in an isolated fashion, and then progressing into functional activity in a safe manner. During this time the therapist should also address any overactivity of the secondary stabilizers such as the long adductors, the proximal gluteals, tensor fascia lata, and the hip flexors.

Once this protective phase is complete, the sportsperson should undertake a dynamic rehabilitation program ensuring full strength of all muscle groups around the hip, normal function of the whole kinetic chain, and sport-specific activity. A full assessment of the muscle strength and function around the hip using real-time ultrasound and hand-held dynamometry at this time can also assist in providing targeted exercise programs to address any ongoing residual deficits in strength or muscle activation. Generally most sportspeople return to full sport between three and five months postoperatively following hip arthroscopy, although this varies depending on the level and type of sport played, as well as the specific pathology and surgery performed.

Os acetabulare

An os acetabulare (or os acetabuli) is defined as “a separated fragment of bone at the rim of the hip socket.” They have traditionally been regarded as an unfused secondary ossification centre. The orientation of the cartilaginous growth plate is more parallel to the joint surface (Figs. 28.22a, b).

Pr ac tic e Pe ar l

In sportspeople, an os acetabulare is seen in conjunction with FAI and is thought to be a fatigue fracture (Figs. 28.22c, d).

The separation line is perpendicular to the joint surface. Similar fatigue fractures had previously been described in severely dysplastic hips.

In a study of 495 patients treated surgically for FAI, 24 a large osseous fragment at the anterolateral rim was found in 18 hips. All patients presented radiographically with a femoral head showing an aspherical extension producing a “cam” impingement. Sixteen hips had a retroverted acetabulum, indicating anterior overcover. Preoperative MRIs confirmed a fragment composed of labrum, articular cartilage, and bone. The gap between the stable acetabulum and the rim fragment had a vertical orientation. All patients had been exposed to a physically demanding profession or contact sport, and in 15 hips no memorable traumatic episode was present. The mechanism
leading to this acetabular rim fragment is thought to be fatiguing due to femoro-acetabular impingement. The aspheric portion of the head is jammed into the acetabulum and with time causes a stress fracture of the area of overcoverage of the anterior acetabulum.

The treatment of symptomatic os acetabulare is commonly achieved during hip arthroscopy. During acetabular rim assessment, the labrum and articular cartilage is probed. It is common for the labrum and articular cartilage to be damaged at the site of the os acetabulare (Fig. 28.22e) and can be unstable to probe. During labral takedown and rim excision, the os acetabulare is removed, and the labrum refixed to the rim of the acetabulum. If the fragment of bone is very large, removal may result in insufficient bony coverage. In these cases, refixing of the fragment is preferred.

Occasionally, toothpaste-like calcific debris (Fig. 28.22f) similar to calcific tendinopathy of the shoulder is removed from the labrum, and is thought to represent a response to labral injury, which can mimic os acetabulare on plain X-ray.
Lateral hip pain
with ANGIE FEARON

Lateral hip pain is a common presentation particularly among distance runners and women over the age of 40. Traditionally lateral hip pain was thought to be due to trochanteric bursitis. However, it appears that tendinopathy of the gluteus medius and/or minimus and bursa pathology probably co-exist. The term “greater trochanter pain syndrome” (GTPS) is now used to describe this condition.75, 76

Greater trochanter pain syndrome (GTPS)
The anatomy of the greater trochanter and its associated tendons and bursae is shown in Figure 28.23. There are two bursae around the greater trochanter. The gluteus medius bursa lies beneath the tendon of the gluteus medius and medial to the greater trochanter. The trochanteric bursa is lateral to the greater trochanter.

Gluteus medius tendinopathy presents with tenderness to palpation of the gluteus medius muscle, and can be triggered by sudden falls, prolonged weight-bearing on one extremity for long periods, activity overuse, or sporting injuries. Most commonly, this situation is observed in middle-aged women who have commenced unaccustomed exercise (e.g. vigorous walking or joining a gymnasium).

Patients report pain over the greater trochanter which may extend into the lateral thigh, and even the lateral leg. The pain tends to be episodic but worsening over time. Frequently, pain lying on the affected side at night is the most distressing symptom, although pain with, or following, weight-bearing activities is likely to be identified. As with other tendon problems, the cumulative load over three days needs to be drawn from the patient in order to identify the aggravating factors.

Palpation of the greater trochanter produces the “jump sign”—the person nearly leaps off the bed. Range of movement tests for flexion, adduction, abduction, and the rotations in 0° and 90° flexion are normal or slightly increased, although muscle spasm may affect these. The FABER test is frequently positive, while Ober’s test (Chapter 34) may or may not be positive.

Resisted external rotation and abduction muscles tests are reported to aid with the diagnosis; however there is very limited evidence to support this. The de-rotation test (Fig. 28.11f) may assist.

The step up and down test (Fig. 28.11i) may help differentiate between tendinopathy, tears, and hip osteoarthritis. Those with more severe GTPS report higher levels of pain with stepping up forwards onto the step, and down sideways off the step. Those with less severe presentation have pain with the hip hitch with external and/or internal rotation. A report of groin pain with these activities is likely if the person has hip joint pathology (e.g. chondropathy, osteoarthritis) in addition to lateral hip pain.

A Trendelenburg gait, and weakness may be present. Differentiating between pain inhibition and true weakness is important. These symptoms specifically affect runners, possibly due to the tilting of the pelvis with running.

Diagnostic ultrasound can be performed to determine if fluid is present in the bursa or thickening exists about the bursa, and to look for echogenic changes that are consistent with tendinopathy and tears.77, 78 Magnetic resonance imaging (MRI) demonstrates tendinopathy and tears of the gluteus medius79, 80 (Fig. 28.24).

Treatment
The principles of treating GTPS are similar to the treatment of other tendinopathies:

- Control pain by minimizing the compression on the greater trochanter and managing the load on the tendons.
- Strengthen the gluteal muscles.81
- Treat the comorbidities.82

Figure 28.23 The anatomy of the greater trochanter and its associated tendons and bursae
Managing pain

In the acute phase, treatment of GTPS consists of relative rest, ice, iliotibial band soft tissue work to improve compliance, taping, gaining good gluteal muscle control, and NSAIDs and paracetamol. Patients should be checked for hip abduction and rotation control in activities of daily living (e.g. getting out of a chair, climbing stairs, and standing). As the patient improves, sport-specific activities such as running, jumping, and hopping should be analyzed. Runners should avoid banked tracks or roads with excessive camber when resuming their running program.

Shock wave therapy has been shown to be effective in the treatment of GTPS.81, 83

Recalcitrant cases may respond to a local corticosteroid injection. A peritendinous ultrasound-guided corticosteroid injection has been shown to be an effective treatment of gluteus medius tendinopathy; 72\% of the patients showed a clinically significant improvement in pain level, which was defined as a reduction in the VAS pain score of ≥30\%.84 However, another study demonstrated that less than 50\% of subjects had a positive outcome three months after the injection.81

It is essential that a corticosteroid injection is only regarded as one part of the treatment—as a means to reduce pain and enable the patient to commence a muscle strengthening and postural control program, which is the key to the treatment process.

Strengthening the gluteal (and other lower leg/trunk) muscles

The following exercises are designed to enhance the control and strength of the gluteal muscles in people with GTPS, and can be taught in addition to lumbopelvic control work (Chapter 14). Importantly, in people with GTPS, positions of hip adduction may be associated with increased pain and hence exercises such as “clams” into hip adduction may be best avoided.

In prone, with the leg slightly abducted, knee flexed 90°, the patient is instructed to medially and laterally rotate their hip within pain limits. Gaining excellent control of this movement through range—including lateral rotation—provides both concentric and eccentric activity of gluteus medius and minimus muscles in an unloaded situation. This exercise should be repeated in varying degrees of hip flexion (prone over pillows or a bolster), as this targets the anterior fibers of gluteus minimus and medius and the middle fibers of gluteus medius. Progression of this exercise is to add ankle weights (using response to load as a guide).

Hip extension and abduction in prone over pillows (hip flexion) and/or bilateral bridging (knees and feet apart to reduce hip adduction) is also useful (Fig. 28.18 on page 531).

Hip abduction strengthening should be avoided in the initial stages of GTPS because it provokes symptoms. Hip abduction should only be commenced when the patient has good control of the deep hip stabilizers, and it should commence in positions of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure28_24}
\caption{MRI appearances of gluteus medius abnormalities (a) Tendinopathy (b) Tendon tear}
\end{figure}
hip abduction initially. As the acute stage resolves, hip abductor strengthening is important and may be achieved in the aquatic environment.

As the patient gains control and strength of gluteal muscles, the clinician should progress the difficulty of exercises. Options include single-leg standing with contralateral hand on a bench or backing against a wall (Fig. 28.25a) to gain static pelvic control, progressing to no assistance (Fig. 28.25b), and more challenging balance exercises (Fig. 28.25c). Rubber-band type (resistance) exercises need to be introduced very carefully, and the response monitored carefully. Pilates-style sliding boards have also been used (Fig. 28.25d).

Treat the comorbidities

Hip-related comorbidities (e.g. osteoarthritis, labral tears) frequently coexist with GTPS, and they should be addressed as outlined above. Furthermore, referred pain from the spine should be assessed and treated as appropriate.

Gluteus medius tendon tears

Gluteus medius and minimus tendon tears are common in older patients. This can be confirmed on MRI (Fig. 28.24b). In patients where the tear remains symptomatic despite conservative management, various surgical options are currently available. Up to 60% obtain relief from an arthroscopic bursectomy, although some patients will go on to a repair of the tendon.

Examination of the hip is in the *Clinical Sports Medicine* masterclasses at www.clinicalsportsmedicine.com.
Figure 28.25 Examples of exercises that provide increasingly greater challenges to improve strength and control of gluteal muscles
REFERENCES

56. Bates D, O'Donnell JM, Pritchard M et al. Assessment of a test to identify presence of ligamentum teres pathology Submitted for publication.